We show convergence rates for a sparse grid approximation of the distribution of solutions of the stochastic Landau-Lifshitz-Gilbert equation. Beyond being a frequently studied equation in engineering and physics, the stochastic Landau-Lifshitz-Gilbert equation poses many interesting challenges that do not appear simultaneously in previous works on uncertainty quantification: The equation is strongly non-linear, time-dependent, and has a non-convex side constraint. Moreover, the parametrization of the stochastic noise features countably many unbounded parameters and low regularity compared to other elliptic and parabolic problems studied in uncertainty quantification. We use a novel technique to establish uniform holomorphic regularity of the parameter-to-solution map based on a Gronwall-type estimate and the implicit function theorem. This method is very general and based on a set of abstract assumptions. Thus, it can be applied beyond the Landau-Lifshitz-Gilbert equation as well. We demonstrate numerically the feasibility of approximating with sparse grid and show a clear advantage of a multi-level sparse grid scheme.
We consider the problem of regularized Poisson Non-negative Matrix Factorization (NMF) problem, encompassing various regularization terms such as Lipschitz and relatively smooth functions, alongside linear constraints. This problem holds significant relevance in numerous Machine Learning applications, particularly within the domain of physical linear unmixing problems. A notable challenge arises from the main loss term in the Poisson NMF problem being a KL divergence, which is non-Lipschitz, rendering traditional gradient descent-based approaches inefficient. In this contribution, we explore the utilization of Block Successive Upper Minimization (BSUM) to overcome this challenge. We build approriate majorizing function for Lipschitz and relatively smooth functions, and show how to introduce linear constraints into the problem. This results in the development of two novel algorithms for regularized Poisson NMF. We conduct numerical simulations to showcase the effectiveness of our approach.
We introduce an extension of classical cellular automata (CA) to arbitrary labeled graphs, and show that FO logic on CA orbits is equivalent to MSO logic. We deduce various results from that equivalence, including a characterization of finitely generated groups on which FO model checking for CA orbits is undecidable, and undecidability of satisfiability of a fixed FO property for CA over finite graphs. We also show concrete examples of FO formulas for CA orbits whose model checking problem is equivalent to the domino problem, or its seeded or recurring variants respectively, on any finitely generated group. For the recurring domino problem, we use an extension of the FO signature by a relation found in the well-known Garden of Eden theorem, but we also show a concrete FO formula without the extension and with one quantifier alternation whose model checking problem does not belong to the arithmetical hierarchy on group Z^2.
We describe a simple deterministic near-linear time approximation scheme for uncapacitated minimum cost flow in undirected graphs with real edge weights, a problem also known as transshipment. Specifically, our algorithm takes as input a (connected) undirected graph $G = (V, E)$, vertex demands $b \in \mathbb{R}^V$ such that $\sum_{v \in V} b(v) = 0$, positive edge costs $c \in \mathbb{R}_{>0}^E$, and a parameter $\varepsilon > 0$. In $O(\varepsilon^{-2} m \log^{O(1)} n)$ time, it returns a flow $f$ such that the net flow out of each vertex is equal to the vertex's demand and the cost of the flow is within a $(1 + \varepsilon)$ factor of optimal. Our algorithm is combinatorial and has no running time dependency on the demands or edge costs. With the exception of a recent result presented at STOC 2022 for polynomially bounded edge weights, all almost- and near-linear time approximation schemes for transshipment relied on randomization to embed the problem instance into low-dimensional space. Our algorithm instead deterministically approximates the cost of routing decisions that would be made if the input were subject to a random tree embedding. To avoid computing the $\Omega(n^2)$ vertex-vertex distances that an approximation of this kind suggests, we also limit the available routing decisions using distances explicitly stored in the well-known Thorup-Zwick distance oracle.
This paper studies a quantum simulation technique for solving the Fokker-Planck equation. Traditional semi-discretization methods often fail to preserve the underlying Hamiltonian dynamics and may even modify the Hamiltonian structure, particularly when incorporating boundary conditions. We address this challenge by employing the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations. We explore the application in two distinct forms of the Fokker-Planck equation. For the conservation form, we show that the semi-discretization-based Schrodingerization is preferable, especially when dealing with non-periodic boundary conditions. Additionally, we analyze the Schrodingerization approach for unstable systems that possess positive eigenvalues in the real part of the coefficient matrix or differential operator. Our analysis reveals that the direct use of Schrodingerization has the same effect as a stabilization procedure. For the heat equation form, we propose a quantum simulation procedure based on the time-splitting technique. We discuss the relationship between operator splitting in the Schrodingerization method and its application directly to the original problem, illustrating how the Schrodingerization method accurately reproduces the time-splitting solutions at each step. Furthermore, we explore finite difference discretizations of the heat equation form using shift operators. Utilizing Fourier bases, we diagonalize the shift operators, enabling efficient simulation in the frequency space. Providing additional guidance on implementing the diagonal unitary operators, we conduct a comparative analysis between diagonalizations in the Bell and the Fourier bases, and show that the former generally exhibits greater efficiency than the latter.
This work performs the convergence analysis of the polytopal nodal discretisation of contact-mechanics (with Tresca friction) recently introduced in [18] in the framework of poro-elastic models in fractured porous media. The scheme is based on a mixed formulation, using face-wise constant approximations of the Lagrange multipliers along the fracture network and a fully discrete first order nodal approximation of the displacement field. The displacement field is enriched with additional bubble degrees of freedom along the fractures to ensure the inf-sup stability with the Lagrange multiplier space. It is presented in a fully discrete formulation, which makes its study more straightforward, but also has a Virtual Element interpretation. The analysis establishes an abstract error estimate accounting for the fully discrete framework and the non-conformity of the discretisation. A first order error estimate is deduced for sufficiently smooth solutions both for the gradient of the displacement field and the Lagrange multiplier. A key difficulty of the numerical analysis is the proof of a discrete inf-sup condition, which is based on a non-standard $H^{-1/2}$-norm (to deal with fracture networks) and involves the jump of the displacements, not their traces. The analysis also requires the proof of a discrete Korn inequality for the discrete displacement field which takes into account fracture networks. Numerical experiments based on analytical solutions confirm our theoretical findings
Motivated by the need for the rigorous analysis of the numerical stability of variational least-squares kernel-based methods for solving second-order elliptic partial differential equations, we provide previously lacking stability inequalities. This fills a significant theoretical gap in the previous work [Comput. Math. Appl. 103 (2021) 1-11], which provided error estimates based on a conjecture on the stability. With the stability estimate now rigorously proven, we complete the theoretical foundations and compare the convergence behavior to the proven rates. Furthermore, we establish another stability inequality involving weighted-discrete norms, and provide a theoretical proof demonstrating that the exact quadrature weights are not necessary for the weighted least-squares kernel-based collocation method to converge. Our novel theoretical insights are validated by numerical examples, which showcase the relative efficiency and accuracy of these methods on data sets with large mesh ratios. The results confirm our theoretical predictions regarding the performance of variational least-squares kernel-based method, least-squares kernel-based collocation method, and our new weighted least-squares kernel-based collocation method. Most importantly, our results demonstrate that all methods converge at the same rate, validating the convergence theory of weighted least-squares in our proven theories.
We introduce a framework rooted in a rate distortion problem for Markov chains, and show how a suite of commonly used Markov Chain Monte Carlo (MCMC) algorithms are specific instances within it, where the target stationary distribution is controlled by the distortion function. Our approach offers a unified variational view on the optimality of algorithms such as Metropolis-Hastings, Glauber dynamics, the swapping algorithm and Feynman-Kac path models. Along the way, we analyze factorizability and geometry of multivariate Markov chains. Specifically, we demonstrate that induced chains on factors of a product space can be regarded as information projections with respect to a particular divergence. This perspective yields Han--Shearer type inequalities for Markov chains as well as applications in the context of large deviations and mixing time comparison.
In a Jacobi--Davidson (JD) type method for singular value decomposition (SVD) problems, called JDSVD, a large symmetric and generally indefinite correction equation is approximately solved iteratively at each outer iteration, which constitutes the inner iterations and dominates the overall efficiency of JDSVD. In this paper, a convergence analysis is made on the minimal residual (MINRES) method for the correction equation. Motivated by the results obtained, a preconditioned correction equation is derived that extracts useful information from current searching subspaces to construct effective preconditioners for the correction equation and is proved to retain the same convergence of outer iterations of JDSVD. The resulting method is called inner preconditioned JDSVD (IPJDSVD) method. Convergence results show that MINRES for the preconditioned correction equation can converge much faster when there is a cluster of singular values closest to a given target, so that IPJDSVD is more efficient than JDSVD. A new thick-restart IPJDSVD algorithm with deflation and purgation is proposed that simultaneously accelerates the outer and inner convergence of the standard thick-restart JDSVD and computes several singular triplets of a large matrix. Numerical experiments justify the theory and illustrate the considerable superiority of IPJDSVD to JDSVD.
This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.
The Hierarchy Of Time-Surfaces (HOTS) algorithm, a neuromorphic approach for feature extraction from event data, presents promising capabilities but faces challenges in accuracy and compatibility with neuromorphic hardware. In this paper, we introduce Sup3r, a Semi-Supervised algorithm aimed at addressing these challenges. Sup3r enhances sparsity, stability, and separability in the HOTS networks. It enables end-to-end online training of HOTS networks replacing external classifiers, by leveraging semi-supervised learning. Sup3r learns class-informative patterns, mitigates confounding features, and reduces the number of processed events. Moreover, Sup3r facilitates continual and incremental learning, allowing adaptation to data distribution shifts and learning new tasks without forgetting. Preliminary results on N-MNIST demonstrate that Sup3r achieves comparable accuracy to similarly sized Artificial Neural Networks trained with back-propagation. This work showcases the potential of Sup3r to advance the capabilities of HOTS networks, offering a promising avenue for neuromorphic algorithms in real-world applications.