亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Acceptance-rejection (AR), Independent Metropolis Hastings (IMH) or importance sampling (IS) Monte Carlo (MC) simulation algorithms all involve computing ratios of probability density functions (pdfs). On the other hand, classifiers discriminate labeled samples produced by a mixture of two distributions and can be used for approximating the ratio of the two corresponding pdfs.This bridge between simulation and classification enables us to propose pdf-free versions of pdf-ratio-based simulation algorithms, where the ratio is replaced by a surrogate function computed via a classifier. From a probabilistic modeling perspective, our procedure involves a structured energy based model which can easily be trained and is compatible with the classical samplers.

相關內容

Multiobjective evolutionary algorithms (MOEAs) are major methods for solving multiobjective optimization problems (MOPs). Many MOEAs have been proposed in the past decades, of which the search operators need a carefully handcrafted design with domain knowledge. Recently, some attempts have been made to replace the manually designed operators in MOEAs with learning-based operators (e.g., neural network models). However, much effort is still required for designing and training such models, and the learned operators might not generalize well on new problems. To tackle the above challenges, this work investigates a novel approach that leverages the powerful large language model (LLM) to design MOEA operators. With proper prompt engineering, we successfully let a general LLM serve as a black-box search operator for decomposition-based MOEA (MOEA/D) in a zero-shot manner. In addition, by learning from the LLM behavior, we further design an explicit white-box operator with randomness and propose a new version of decomposition-based MOEA, termed MOEA/D-LO. Experimental studies on different test benchmarks show that our proposed method can achieve competitive performance with widely used MOEAs. It is also promising to see the operator only learned from a few instances can have robust generalization performance on unseen problems with quite different patterns and settings. The results reveal the potential benefits of using pre-trained LLMs in the design of MOEAs.

This paper presents a new algorithm for generating random inverse-Wishart matrices that directly generates the Cholesky factor of the matrix without computing the factorization. Whenever parameterized in terms of a precision matrix $\Omega=\Sigma^{-1}$, or its Cholesky factor, instead of a covariance matrix $\Sigma$, the new algorithm is more efficient than the current standard algorithm.

Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in physics and engineering. Many such problems have alternative formulations as integral equations that are mathematically more tractable than their PDE counterparts. However, the integral equation formulation poses a challenge in solving the dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and compute costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' The analysis of its parallel scalability applies generally to a class of existing methods that exploit the so-called strong admissibility. Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes data movement. Given a compression tolerance, our method constructs an approximate factorization of a discretized integral operator (dense matrix), which can be used to solve linear systems efficiently in parallel. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to demonstrate the performance of our implementation using the Julia language.

We develop commuting finite element projections over smooth Riemannian manifolds. This extension of finite element exterior calculus establishes the stability and convergence of finite element methods for the Hodge-Laplace equation on manifolds. The commuting projections use localized mollification operators, building upon a classical construction by de Rham. These projections are uniformly bounded on Lebesgue spaces of differential forms and map onto intrinsic finite element spaces defined with respect to an intrinsic smooth triangulation of the manifold. We analyze the Galerkin approximation error. Since practical computations use extrinsic finite element methods over approximate computational manifolds, we also analyze the geometric error incurred.

Nonparametric maximum likelihood estimators (MLEs) in inverse problems often have non-normal limit distributions, like Chernoff's distribution. However, if one considers smooth functionals of the model, with corresponding functionals of the MLE, one gets normal limit distributions and faster rates of convergence. We demonstrate this for a model for the incubation time of a disease. The usual approach in the latter models is to use parametric distributions, like Weibull and gamma distributions, which leads to inconsistent estimators. Smoothed bootstrap methods are discussed for constructing confidence intervals. The classical bootstrap, based on the nonparametric MLE itself, has been proved to be inconsistent in this situation.

We introduce novel Markov chain Monte Carlo (MCMC) algorithms based on numerical approximations of piecewise-deterministic Markov processes obtained with the framework of splitting schemes. We present unadjusted as well as adjusted algorithms, for which the asymptotic bias due to the discretisation error is removed applying a non-reversible Metropolis-Hastings filter. In a general framework we demonstrate that the unadjusted schemes have weak error of second order in the step size, while typically maintaining a computational cost of only one gradient evaluation of the negative log-target function per iteration. Focusing then on unadjusted schemes based on the Bouncy Particle and Zig-Zag samplers, we provide conditions ensuring geometric ergodicity and consider the expansion of the invariant measure in terms of the step size. We analyse the dependence of the leading term in this expansion on the refreshment rate and on the structure of the splitting scheme, giving a guideline on which structure is best. Finally, we illustrate the competitiveness of our samplers with numerical experiments on a Bayesian imaging inverse problem and a system of interacting particles.

We propose a novel approach to numerically approximate McKean-Vlasov stochastic differential equations (MV-SDE) using stochastic gradient descent (SGD) while avoiding the use of interacting particle systems. The technique of SGD is deployed to solve a Euclidean minimization problem, which is obtained by first representing the MV-SDE as a minimization problem over the set of continuous functions of time, and then by approximating the domain with a finite-dimensional subspace. Convergence is established by proving certain intermediate stability and moment estimates of the relevant stochastic processes (including the tangent ones). Numerical experiments illustrate the competitive performance of our SGD based method compared to the IPS benchmarks. This work offers a theoretical foundation for using the SGD method in the context of numerical approximation of MV-SDEs, and provides analytical tools to study its stability and convergence.

This document presents adequate formal terminology for the mathematical specification of a subset of Agent Based Models (ABMs) in the field of Demography. The simulation of the targeted ABMs follows a fixedstep single-clocked pattern. The proposed terminology further improves the model understanding and can act as a stand-alone protocol for the specification and optionally the documentation of a significant set of (demographic) ABMs. Nevertheless, it is imaginable the this terminology can serve as an inspiring basis for further improvement to the largely-informal widely-used model documentation and communication O.D.D. protocol [Grimm and et al., 2020, Amouroux et al., 2010] to reduce many sources of ambiguity which hinder model replications by other modelers. A published demographic model documentation, largely simplified version of the Lone Parent Model [Gostoli and Silverman, 2020] is separately published in [Elsheikh, 2023c] as illustration for the formal terminology presented here. The model was implemented in the Julia language [Elsheikh, 2023b] based on the Agents.jl julia package [Datseris et al., 2022].

We present the conditional determinantal point process (DPP) approach to obtain new (mostly Fredholm determinantal) expressions for various eigenvalue statistics in random matrix theory. It is well-known that many (especially $\beta=2$) eigenvalue $n$-point correlation functions are given in terms of $n\times n$ determinants, i.e., they are continuous DPPs. We exploit a derived kernel of the conditional DPP which gives the $n$-point correlation function conditioned on the event of some eigenvalues already existing at fixed locations. Using such kernels we obtain new determinantal expressions for the joint densities of the $k$ largest eigenvalues, probability density functions of the $k^\text{th}$ largest eigenvalue, density of the first eigenvalue spacing, and more. Our formulae are highly amenable to numerical computations and we provide various numerical experiments. Several numerical values that required hours of computing time could now be computed in seconds with our expressions, which proves the effectiveness of our approach. We also demonstrate that our technique can be applied to an efficient sampling of DR paths of the Aztec diamond domino tiling. Further extending the conditional DPP sampling technique, we sample Airy processes from the extended Airy kernel. Additionally we propose a sampling method for non-Hermitian projection DPPs.

Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.

北京阿比特科技有限公司