亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In continuum-armed bandit problems where the underlying function resides in a reproducing kernel Hilbert space (RKHS), namely, the kernelised bandit problems, an important open problem remains of how well learning algorithms can adapt if the regularity of the associated kernel function is unknown. In this work, we study adaptivity to the regularity of translation-invariant kernels, which is characterized by the decay rate of the Fourier transformation of the kernel, in the bandit setting. We derive an adaptivity lower bound, proving that it is impossible to simultaneously achieve optimal cumulative regret in a pair of RKHSs with different regularities. To verify the tightness of this lower bound, we show that an existing bandit model selection algorithm applied with minimax non-adaptive kernelised bandit algorithms matches the lower bound in dependence of $T$, the total number of steps, except for log factors. By filling in the regret bounds for adaptivity between RKHSs, we connect the statistical difficulty for adaptivity in continuum-armed bandits in three fundamental types of function spaces: RKHS, Sobolev space, and H\"older space.

相關內容

We consider a general online resource allocation model with bandit feedback and time-varying demands. While online resource allocation has been well studied in the literature, most existing works make the strong assumption that the demand arrival process is stationary. In practical applications, such as online advertisement and revenue management, however, this process may be exogenous and non-stationary, like the constantly changing internet traffic. Motivated by the recent Online Algorithms with Advice framework [Mitazenmacher and Vassilvitskii, \emph{Commun. ACM} 2022], we explore how online advice can inform policy design. We establish an impossibility result that any algorithm perform poorly in terms of regret without any advice in our setting. In contrast, we design an robust online algorithm that leverages the online predictions on the total demand volumes. Empowered with online advice, our proposed algorithm is shown to have both theoretical performance and promising numerical results compared with other algorithms in literature. We also provide two explicit examples for the time-varying demand scenarios and derive corresponding theoretical performance guarantees. Finally, we adapt our model to a network revenue management problem, and numerically demonstrate that our algorithm can still performs competitively compared to existing baselines.

Modelling in biology must adapt to increasingly complex and massive data. The efficiency of the inference algorithms used to estimate model parameters is therefore questioned. Many of these are based on stochastic optimization processes which waste a significant part of the computation time due to their rejection sampling approaches. We introduce the Fixed Landscape Inference MethOd (flimo), a new likelihood-free inference method for continuous state-space stochastic models. It applies deterministic gradient-based optimization algorithms to obtain a point estimate of the parameters, minimizing the difference between the data and some simulations according to some prescribed summary statistics. In this sense, it is analogous to Approximate Bayesian Computation (ABC). Like ABC, it can also provide an approximation of the distribution of the parameters. Three applications are proposed: a usual theoretical example, namely the inference of the parameters of g-and-k distributions; a population genetics problem, not so simple as it seems, namely the inference of a selective value from time series in a Wright-Fisher model; and simulations from a Ricker model, representing chaotic population dynamics. In the two first applications, the results show a drastic reduction of the computational time needed for the inference phase compared to the other methods, despite an equivalent accuracy. Even when likelihood-based methods are applicable, the simplicity and efficiency of flimo make it a compelling alternative. Implementations in Julia and in R are available on //metabarcoding.org/flimo. To run flimo, the user must simply be able to simulate data according to the chosen model.

Recent years have seen a growing interest in accelerating optimization algorithms with machine-learned predictions. Sakaue and Oki (NeurIPS 2022) have developed a general framework that warm-starts the L-convex function minimization method with predictions, revealing the idea's usefulness for various discrete optimization problems. In this paper, we present a framework for using predictions to accelerate M-convex function minimization, thus complementing previous research and extending the range of discrete optimization algorithms that can benefit from predictions. Our framework is particularly effective for an important subclass called laminar convex minimization, which appears in many operations research applications. Our methods can improve time complexity bounds upon the best worst-case results by using predictions and even have potential to go beyond a lower-bound result.

We study the Conjugate Kernel associated to a multi-layer linear-width feed-forward neural network with random weights, biases and data. We show that the empirical spectral distribution of the Conjugate Kernel converges to a deterministic limit. More precisely we obtain a deterministic equivalent for its Stieltjes transform and its resolvent, with quantitative bounds involving both the dimension and the spectral parameter. The limiting equivalent objects are described by iterating free convolution of measures and classical matrix operations involving the parameters of the model.

Supervised learning is often affected by a covariate shift in which the marginal distributions of instances (covariates $x$) of training and testing samples $\mathrm{p}_\text{tr}(x)$ and $\mathrm{p}_\text{te}(x)$ are different but the label conditionals coincide. Existing approaches address such covariate shift by either using the ratio $\mathrm{p}_\text{te}(x)/\mathrm{p}_\text{tr}(x)$ to weight training samples (reweighted methods) or using the ratio $\mathrm{p}_\text{tr}(x)/\mathrm{p}_\text{te}(x)$ to weight testing samples (robust methods). However, the performance of such approaches can be poor under support mismatch or when the above ratios take large values. We propose a minimax risk classification (MRC) approach for covariate shift adaptation that avoids such limitations by weighting both training and testing samples. In addition, we develop effective techniques that obtain both sets of weights and generalize the conventional kernel mean matching method. We provide novel generalization bounds for our method that show a significant increase in the effective sample size compared with reweighted methods. The proposed method also achieves enhanced classification performance in both synthetic and empirical experiments.

Simulation-based inference (SBI) methods such as approximate Bayesian computation (ABC), synthetic likelihood, and neural posterior estimation (NPE) rely on simulating statistics to infer parameters of intractable likelihood models. However, such methods are known to yield untrustworthy and misleading inference outcomes under model misspecification, thus hindering their widespread applicability. In this work, we propose the first general approach to handle model misspecification that works across different classes of SBI methods. Leveraging the fact that the choice of statistics determines the degree of misspecification in SBI, we introduce a regularized loss function that penalises those statistics that increase the mismatch between the data and the model. Taking NPE and ABC as use cases, we demonstrate the superior performance of our method on high-dimensional time-series models that are artificially misspecified. We also apply our method to real data from the field of radio propagation where the model is known to be misspecified. We show empirically that the method yields robust inference in misspecified scenarios, whilst still being accurate when the model is well-specified.

We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices \citep{lauritzen2019maximum,slawski2015estimation} and even one observation for diagonally dominant M-matrices \citep{truell2021maximum}. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted $\ell_1$-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.

In modern scientific experiments, we frequently encounter data that have large dimensions, and in some experiments, such high dimensional data arrive sequentially rather than full data being available all at a time. We develop multiple testing procedures with simultaneous control of false discovery and nondiscovery rates when $m$-variate data vectors $\mathbf{X}_1, \mathbf{X}_2, \dots$ are observed sequentially or in groups and each coordinate of these vectors leads to a hypothesis testing. Existing multiple testing methods for sequential data uses fixed stopping boundaries that do not depend on sample size, and hence, are quite conservative when the number of hypotheses $m$ is large. We propose sequential tests based on adaptive stopping boundaries that ensure shrinkage of the continue sampling region as the sample size increases. Under minimal assumptions on the data sequence, we first develop a test based on an oracle test statistic such that both false discovery rate (FDR) and false nondiscovery rate (FNR) are nearly equal to some prefixed levels with strong control. Under a two-group mixture model assumption, we propose a data-driven stopping and decision rule based on local false discovery rate statistic that mimics the oracle rule and guarantees simultaneous control of FDR and FNR asymptotically as $m$ tends to infinity. Both the oracle and the data-driven stopping times are shown to be finite (i.e., proper) with probability 1 for all finite $m$ and converge to a finite constant as $m$ grows to infinity. Further, we compare the data-driven test with the existing gap rule proposed in He and Bartroff (2021) and show that the ratio of the expected sample sizes of our method and the gap rule tends to zero as $m$ goes to infinity. Extensive analysis of simulated datasets as well as some real datasets illustrate the superiority of the proposed tests over some existing methods.

Modern 5G wireless cellular networks use massive multiple-input multiple-output (MIMO) technology. This concept entails using an antenna array at a base station to concurrently service many mobile devices that have several antennas on their side. In this field, a significant role is played by the precoding (beamforming) problem. During downlink, an important part of precoding is the power allocation problem that distributes power between transmitted symbols. In this paper, we consider the power allocation problem for a class of precodings that asymptotically work as regularized zero-forcing. Under some realistic assumptions, we simplify the spectral efficiency functional and obtain tractable expressions for it. We prove that equal power allocation provides optimum for the simplified functional with total power constraint (TPC). We propose low-complexity Intersection Methods (IM) that improve equal power allocation in the case of per-antenna power constraints (PAPC). On simulations using Quadriga, the proposed IM method in combination with widely-studied Water Filling (WF) shows a significant gain in spectral efficiency while using a similar computing time as the reference Equal Power (EP) solution.

Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.

北京阿比特科技有限公司