亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For traditional modular software systems, "high cohesion, low coupling" is a recommended setting while it remains so for microservice architectures. However, coupling phenomena commonly exist therein which are caused by cross-service calls and dependencies. In addition, it is noticeable that teams for microservice projects can also suffer from high coupling issues in terms of their cross-service contribution, which can inevitably result in technical debt and high managerial costs. Such organizational coupling needs to be detected and mitigated in time to prevent future losses. Therefore, this paper proposes an automatable approach to evaluate the organizational couple by investigating the microservice ownership and cross-service contribution.

相關內容

signSGD is popular in nonconvex optimization due to its communication efficiency. Yet, existing analyses of signSGD rely on assuming that data are sampled with replacement in each iteration, contradicting the practical implementation where data are randomly reshuffled and sequentially fed into the algorithm. We bridge this gap by proving the first convergence result of signSGD with random reshuffling (SignRR) for nonconvex optimization. Given the dataset size $n$, the number of epochs of data passes $T$, and the variance bound of a stochastic gradient $\sigma^2$, we show that SignRR has the same convergence rate $O(\log(nT)/\sqrt{nT} + \|\sigma\|_1)$ as signSGD \citep{bernstein2018signsgd}. We then present SignRVR and SignRVM, which leverage variance-reduced gradients and momentum updates respectively, both converging at $O(\log(nT)/\sqrt{nT})$. In contrast with the analysis of signSGD, our results do not require an extremely large batch size in each iteration to be of the same order as the total number of iterations \citep{bernstein2018signsgd} or the signs of stochastic and true gradients match element-wise with a minimum probability of 1/2 \citep{safaryan2021stochastic}. We also extend our algorithms to cases where data are distributed across different machines, yielding dist-SignRVR and dist-SignRVM, both converging at $O(\log(n_0T)/\sqrt{n_0T})$, where $n_0$ is the dataset size of a single machine. We back up our theoretical findings through experiments on simulated and real-world problems, verifying that randomly reshuffled sign methods match or surpass existing baselines.

Many machine learning models use the manipulation of dimensions as a driving force to enable models to identify and learn important features in data. In the case of sequential data this manipulation usually happens on the token dimension level. Despite the fact that many tasks require a change in sequence length itself, the step of sequence length reduction usually happens out of necessity and in a single step. As far as we are aware, no model uses the sequence length reduction step as an additional opportunity to tune the models performance. In fact, sequence length manipulation as a whole seems to be an overlooked direction. In this study we introduce a novel attention-based method that allows for the direct manipulation of sequence lengths. To explore the method's capabilities, we employ it in an autoencoder model. The autoencoder reduces the input sequence to a smaller sequence in latent space. It then aims to reproduce the original sequence from this reduced form. In this setting, we explore the methods reduction performance for different input and latent sequence lengths. We are able to show that the autoencoder retains all the significant information when reducing the original sequence to half its original size. When reducing down to as low as a quarter of its original size, the autoencoder is still able to reproduce the original sequence with an accuracy of around 90%.

Autonomous flying robots, such as multirotors, often rely on deep learning models that make predictions based on a camera image, e.g. for pose estimation. These models can predict surprising results if applied to input images outside the training domain. This fault can be exploited by adversarial attacks, for example, by computing small images, so-called adversarial patches, that can be placed in the environment to manipulate the neural network's prediction. We introduce flying adversarial patches, where multiple images are mounted on at least one other flying robot and therefore can be placed anywhere in the field of view of a victim multirotor. By introducing the attacker robots, the system is extended to an adversarial multi-robot system. For an effective attack, we compare three methods that simultaneously optimize multiple adversarial patches and their position in the input image. We show that our methods scale well with the number of adversarial patches. Moreover, we demonstrate physical flights with two robots, where we employ a novel attack policy that uses the computed adversarial patches to kidnap a robot that was supposed to follow a human.

Recently, deep learning-based tooth segmentation methods have been limited by the expensive and time-consuming processes of data collection and labeling. Achieving high-precision segmentation with limited datasets is critical. A viable solution to this entails fine-tuning pre-trained multiview-based models, thereby enhancing performance with limited data. However, relying solely on two-dimensional (2D) images for three-dimensional (3D) tooth segmentation can produce suboptimal outcomes because of occlusion and deformation, i.e., incomplete and distorted shape perception. To improve this fine-tuning-based solution, this paper advocates 2D-3D joint perception. The fundamental challenge in employing 2D-3D joint perception with limited data is that the 3D-related inputs and modules must follow a lightweight policy instead of using huge 3D data and parameter-rich modules that require extensive training data. Following this lightweight policy, this paper selects skeletons as the 3D inputs and introduces MSFormer, a novel method for tooth segmentation. MSFormer incorporates two lightweight modules into existing multiview-based models: a 3D-skeleton perception module to extract 3D perception from skeletons and a skeleton-image contrastive learning module to obtain the 2D-3D joint perception by fusing both multiview and skeleton perceptions. The experimental results reveal that MSFormer paired with large pre-trained multiview models achieves state-of-the-art performance, requiring only 100 training meshes. Furthermore, the segmentation accuracy is improved by 2.4%-5.5% with the increasing volume of training data.

With the ever-increasing execution scale of high performance computing (HPC) applications, vast amounts of data are being produced by scientific research every day. Error-bounded lossy compression has been considered a very promising solution to address the big-data issue for scientific applications because it can significantly reduce the data volume with low time cost meanwhile allowing users to control the compression errors with a specified error bound. The existing error-bounded lossy compressors, however, are all developed based on inflexible designs or compression pipelines, which cannot adapt to diverse compression quality requirements/metrics favored by different application users. In this paper, we propose a novel dynamic quality metric oriented error-bounded lossy compression framework, namely QoZ. The detailed contribution is three-fold. (1) We design a novel highly-parameterized multi-level interpolation-based data predictor, which can significantly improve the overall compression quality with the same compressed size. (2) We design the error-bounded lossy compression framework QoZ based on the adaptive predictor, which can auto-tune the critical parameters and optimize the compression result according to user-specified quality metrics during online compression. (3) We evaluate QoZ carefully by comparing its compression quality with multiple state-of-the-arts on various real-world scientific application datasets. Experiments show that, compared with the second-best lossy compressor, QoZ can achieve up to 70% compression ratio improvement under the same error bound, up to 150% compression ratio improvement under the same PSNR, or up to 270% compression ratio improvement under the same SSIM.

With the thriving of pre-trained language model (PLM) widely verified in various of NLP tasks, pioneer efforts attempt to explore the possible cooperation of the general textual information in PLM with the personalized behavioral information in user historical behavior sequences to enhance sequential recommendation (SR). However, despite the commonalities of input format and task goal, there are huge gaps between the behavioral and textual information, which obstruct thoroughly modeling SR as language modeling via PLM. To bridge the gap, we propose a novel Unified pre-trained language model enhanced sequential recommendation (UPSR), aiming to build a unified pre-trained recommendation model for multi-domain recommendation tasks. We formally design five key indicators, namely naturalness, domain consistency, informativeness, noise & ambiguity, and text length, to guide the text->item adaptation and behavior sequence->text sequence adaptation differently for pre-training and fine-tuning stages, which are essential but under-explored by previous works. In experiments, we conduct extensive evaluations on seven datasets with both tuning and zero-shot settings and achieve the overall best performance. Comprehensive model analyses also provide valuable insights for behavior modeling via PLM, shedding light on large pre-trained recommendation models. The source codes will be released in the future.

The digitization of manufacturing processes enables promising applications for machine learning-assisted quality assurance. A widely used manufacturing process that can strongly benefit from data-driven solutions is gas metal arc welding (GMAW). The welding process is characterized by complex cause-effect relationships between material properties, process conditions and weld quality. In non-laboratory environments with frequently changing process parameters, accurate determination of weld quality by destructive testing is economically unfeasible. Deep learning offers the potential to identify the relationships in available process data and predict the weld quality from process observations. In this paper, we present a concept for a deep learning based predictive quality system in GMAW. At its core, the concept involves a pipeline consisting of four major phases: collection and management of multi-sensor data (e.g. current and voltage), real-time processing and feature engineering of the time series data by means of autoencoders, training and deployment of suitable recurrent deep learning models for quality predictions, and model evolutions under changing process conditions using continual learning. The concept provides the foundation for future research activities in which we will realize an online predictive quality system for running production.

This paper presents a novel approach to enhance the performance of binary code comment quality classification models through the application of Generative Artificial Intelligence (AI). By leveraging the OpenAI API, a dataset comprising 1239 newly generated code-comment pairs, extracted from various GitHub repositories and open-source projects, has been labelled as "Useful" or "Not Useful", and integrated into the existing corpus of 9048 pairs in the C programming language. Employing a cutting-edge Large Language Model Architecture, the generated dataset demonstrates notable improvements in model accuracy. Specifically, when incorporated into the Support Vector Machine (SVM) model, a 6% increase in precision is observed, rising from 0.79 to 0.85. Additionally, the Artificial Neural Network (ANN) model exhibits a 1.5% increase in recall, climbing from 0.731 to 0.746. This paper sheds light on the potential of Generative AI in augmenting code comment quality classification models. The results affirm the effectiveness of this methodology, indicating its applicability in broader contexts within software development and quality assurance domains. The findings underscore the significance of integrating generative techniques to advance the accuracy and efficacy of machine learning models in practical software engineering scenarios.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司