亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, deep learning-based tooth segmentation methods have been limited by the expensive and time-consuming processes of data collection and labeling. Achieving high-precision segmentation with limited datasets is critical. A viable solution to this entails fine-tuning pre-trained multiview-based models, thereby enhancing performance with limited data. However, relying solely on two-dimensional (2D) images for three-dimensional (3D) tooth segmentation can produce suboptimal outcomes because of occlusion and deformation, i.e., incomplete and distorted shape perception. To improve this fine-tuning-based solution, this paper advocates 2D-3D joint perception. The fundamental challenge in employing 2D-3D joint perception with limited data is that the 3D-related inputs and modules must follow a lightweight policy instead of using huge 3D data and parameter-rich modules that require extensive training data. Following this lightweight policy, this paper selects skeletons as the 3D inputs and introduces MSFormer, a novel method for tooth segmentation. MSFormer incorporates two lightweight modules into existing multiview-based models: a 3D-skeleton perception module to extract 3D perception from skeletons and a skeleton-image contrastive learning module to obtain the 2D-3D joint perception by fusing both multiview and skeleton perceptions. The experimental results reveal that MSFormer paired with large pre-trained multiview models achieves state-of-the-art performance, requiring only 100 training meshes. Furthermore, the segmentation accuracy is improved by 2.4%-5.5% with the increasing volume of training data.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

We develop a generative attention-based approach to modeling structured entities comprising different property types, such as numerical, categorical, string, and composite. This approach handles such heterogeneous data through a mixed continuous-discrete diffusion process over the properties. Our flexible framework can model entities with arbitrary hierarchical properties, enabling applications to structured Knowledge Base (KB) entities and tabular data. Our approach obtains state-of-the-art performance on a majority of cases across 15 datasets. In addition, experiments with a device KB and a nuclear physics dataset demonstrate the model's ability to learn representations useful for entity completion in diverse settings. This has many downstream use cases, including modeling numerical properties with high accuracy - critical for science applications, which also benefit from the model's inherent probabilistic nature.

We present DARLEI, a framework that combines evolutionary algorithms with parallelized reinforcement learning for efficiently training and evolving populations of UNIMAL agents. Our approach utilizes Proximal Policy Optimization (PPO) for individual agent learning and pairs it with a tournament selection-based generational learning mechanism to foster morphological evolution. By building on Nvidia's Isaac Gym, DARLEI leverages GPU accelerated simulation to achieve over 20x speedup using just a single workstation, compared to previous work which required large distributed CPU clusters. We systematically characterize DARLEI's performance under various conditions, revealing factors impacting diversity of evolved morphologies. For example, by enabling inter-agent collisions within the simulator, we find that we can simulate some multi-agent interactions between the same morphology, and see how it influences individual agent capabilities and long-term evolutionary adaptation. While current results demonstrate limited diversity across generations, we hope to extend DARLEI in future work to include interactions between diverse morphologies in richer environments, and create a platform that allows for coevolving populations and investigating emergent behaviours in them. Our source code is also made publicly at //saeejithnair.github.io/darlei.

Amid the ongoing advancements in Federated Learning (FL), a machine learning paradigm that allows collaborative learning with data privacy protection, personalized FL (pFL) has gained significant prominence as a research direction within the FL domain. Whereas traditional FL (tFL) focuses on jointly learning a global model, pFL aims to achieve a balance between the global and personalized objectives of each client in FL settings. To foster the pFL research community, we propose PFLlib, a comprehensive pFL algorithm library with an integrated evaluation platform. In PFLlib, We implement 34 state-of-the-art FL algorithms (including 7 classic tFL algorithms and 27 pFL algorithms) and provide various evaluation environments with three statistically heterogeneous scenarios and 14 datasets. At present, PFLlib has already gained 850 stars and 199 forks on GitHub.

Recent advances in deep learning, and especially the invention of encoder-decoder architectures, has significantly improved the performance of abstractive summarization systems. The majority of research has focused on written documents, however, neglecting the problem of multi-party dialogue summarization. In this paper, we present a dataset of French political debates for the purpose of enhancing resources for multi-lingual dialogue summarization. Our dataset consists of manually transcribed and annotated political debates, covering a range of topics and perspectives. We highlight the importance of high quality transcription and annotations for training accurate and effective dialogue summarization models, and emphasize the need for multilingual resources to support dialogue summarization in non-English languages. We also provide baseline experiments using state-of-the-art methods, and encourage further research in this area to advance the field of dialogue summarization. Our dataset will be made publicly available for use by the research community.

Deep learning has yielded remarkable outcomes in various domains. However, the challenge of requiring large-scale labeled samples still persists in deep learning. Thus, data augmentation has been introduced as a critical strategy to train deep learning models. However, data augmentation suffers from information loss and poor performance in small sample environments. To overcome these drawbacks, we propose a feature augmentation method based on shape space theory, i.e., Geodesic curve feature augmentation, called GCFA in brevity. First, we extract features from the image with the neural network model. Then, the multiple image features are projected into a pre-shape space as features. In the pre-shape space, a Geodesic curve is built to fit the features. Finally, the many generated features on the Geodesic curve are used to train the various machine learning models. The GCFA module can be seamlessly integrated with most machine learning methods. And the proposed method is simple, effective and insensitive for the small sample datasets. Several examples demonstrate that the GCFA method can greatly improve the performance of the data preprocessing model in a small sample environment.

Feature learning is a widely used method employed for large-scale face recognition. Recently, large-margin softmax loss methods have demonstrated significant enhancements on deep face recognition. These methods propose fixed positive margins in order to enforce intra-class compactness and inter-class diversity. However, the majority of the proposed methods do not consider the class imbalance issue, which is a major challenge in practice for developing deep face recognition models. We hypothesize that it significantly affects the generalization ability of the deep face models. Inspired by this observation, we introduce a novel adaptive strategy, called KappaFace, to modulate the relative importance based on class difficultness and imbalance. With the support of the von Mises-Fisher distribution, our proposed KappaFace loss can intensify the margin's magnitude for hard learning or low concentration classes while relaxing it for counter classes. Experiments conducted on popular facial benchmarks demonstrate that our proposed method achieves superior performance to the state-of-the-art.

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司