In this paper, we propose and analyze a linear second-order numerical method for solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is carefully constructed based on the combination of first and second-order backward differentiation formulas with nonuniform time steps for temporal approximation and the central finite difference for spatial discretization. The discrete maximum bound principle is proved of the proposed scheme by using the kernel recombination technique under certain mild constraints on the time steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete $H^{1}$ error estimate and energy stability for the classic constant mobility case and the $L^{\infty}$ error estimate for the general mobility case. Various numerical experiments are also presented to validate the theoretical results and demonstrate the performance of the proposed method with a time adaptive strategy.
We present a categorical theory of the composition methods in finite model theory -- a key technique enabling modular reasoning about complex structures by building them out of simpler components. The crucial results required by the composition methods are Feferman-Vaught-Mostowski (FVM) type theorems, which characterize how logical equivalence behaves under composition and transformation of models. Our results are developed by extending the recently introduced game comonad semantics for model comparison games. This level of abstraction allow us to give conditions yielding FVM type results in a uniform way. Our theorems are parametric in the classes of models, logics and operations involved. Furthermore, they naturally account for the positive existential fragment, and extensions with counting quantifiers of these logics. We also reveal surprising connections between FVM type theorems, and classical concepts in the theory of monads. We illustrate our methods by recovering many classical theorems of practical interest, including a refinement of a previous result by Dawar, Severini, and Zapata concerning the 3-variable counting logic and cospectrality. To highlight the importance of our techniques being parametric in the logic of interest, we prove a family of FVM theorems for products of structures, uniformly in the logic in question, which cannot be done using specific game arguments.
Unsourced random access (URA) is a particular form of grant-free uncoordinated random access wherein the users' identities are not associated to specific waveforms at the physical layer. Tensor-based modulation (TBM) has been recently advocated as a promising technique for URA due to its ability to support a large number of active users transmitting simultaneously by exploiting tensor decomposition for user separation. We propose a novel URA scheme that builds upon TBM by splitting the transmit message into two sub-messages. This first part is modulated according to a TBM scheme, while the second is encoded using a coherent non-orthogonal multiple access (NOMA) modulation. At the receiver side, we exploit the advantages of forward error correction (FEC) coding and interference cancellation techniques. We compare the performances of the introduced scheme with state-of-the-art URA schemes under a quasi-static Rayleigh fading model, proving the energy efficiency and the fading robustness of the proposed solution.
To meet order fulfillment targets, manufacturers seek to optimize production schedules. Machine learning can support this objective by predicting throughput times on production lines given order specifications. However, this is challenging when manufacturers produce customized products because customization often leads to changes in the probability distribution of operational data -- so-called distributional shifts. Distributional shifts can harm the performance of predictive models when deployed to future customer orders with new specifications. The literature provides limited advice on how such distributional shifts can be addressed in operations management. Here, we propose a data-driven approach based on adversarial learning and job shop scheduling, which allows us to account for distributional shifts in manufacturing settings with high degrees of product customization. We empirically validate our proposed approach using real-world data from a job shop production that supplies large metal components to an oil platform construction yard. Across an extensive series of numerical experiments, we find that our adversarial learning approach outperforms common baselines. Overall, this paper shows how production managers can improve their decision-making under distributional shifts.
Quadratic minimization problems with orthogonality constraints (QMPO) play an important role in many applications of science and engineering. However, some existing methods may suffer from low accuracy or heavy workload for large-scale QMPO. Krylov subspace methods are popular for large-scale optimization problems. In this work, we propose a block Lanczos method for solving the large-scale QMPO. In the proposed method, the original problem is projected into a small-sized one, and the Riemannian Trust-Region method is employed to solve the reduced QMPO. Convergence results on the optimal solution, the optimal objective function value, the multiplier and the KKT error are established. Moreover, we give the convergence speed of optimal solution, and show that if the block Lanczos process terminates, then an exact KKT solution is derived. Numerical experiments illustrate the numerical behavior of the proposed algorithm, and demonstrate that it is more powerful than many state-of-the-art algorithms for large-scale quadratic minimization problems with orthogonality constraints.
We studied the least-squares ReLU neural network method (LSNN) for solving linear advection-reaction equation with discontinuous solution in [Cai, Zhiqiang, Jingshuang Chen, and Min Liu. ``Least-squares ReLU neural network (LSNN) method for linear advection-reaction equation.'' Journal of Computational Physics 443 (2021), 110514]. The method is based on a least-squares formulation and uses a new class of approximating functions: ReLU neural network (NN) functions. A critical and additional component of the LSNN method, differing from other NN-based methods, is the introduction of a proper designed discrete differential operator. In this paper, we study the LSNN method for problems with arbitrary discontinuous interfaces. First, we show that ReLU NN functions with depth $\lceil \log_2(d+1)\rceil+1$ can approximate any $d$-dimensional step function on arbitrary discontinuous interfaces with any prescribed accuracy. By decomposing the solution into continuous and discontinuous parts, we prove theoretically that discretization error of the LSNN method using ReLU NN functions with depth $\lceil \log_2(d+1)\rceil+1$ is mainly determined by the continuous part of the solution provided that the solution jump is constant. Numerical results for both two and three dimensional problems with various discontinuous interfaces show that the LSNN method with enough layers is accurate and does not exhibit the common Gibbs phenomena along the discontinuous interface.
We propose a new variant of Chubanov's method for solving the feasibility problem over the symmetric cone by extending Roos's method (2018) of solving the feasibility problem over the nonnegative orthant. The proposed method considers a feasibility problem associated with a norm induced by the maximum eigenvalue of an element and uses a rescaling focusing on the upper bound for the sum of eigenvalues of any feasible solution to the problem. Its computational bound is (i) equivalent to that of Roos's original method (2018) and superior to that of Louren\c{c}o et al.'s method (2019) when the symmetric cone is the nonnegative orthant, (ii) superior to that of Louren\c{c}o et al.'s method (2019) when the symmetric cone is a Cartesian product of second-order cones, (iii) equivalent to that of Louren\c{c}o et al.'s method (2019) when the symmetric cone is the simple positive semidefinite cone, and (iv) superior to that of Pena and Soheili's method (2017) for any simple symmetric cones under the feasibility assumption of the problem imposed in Pena and Soheili's method (2017). We also conduct numerical experiments that compare the performance of our method with existing methods by generating instances in three types: strongly (but ill-conditioned) feasible instances, weakly feasible instances, and infeasible instances. For any of these instances, the proposed method is rather more efficient than the existing methods in terms of accuracy and execution time.
In this article, we derive fast and robust parallel-in-time preconditioned iterative methods for the all-at-once linear systems arising upon discretization of time-dependent PDEs. The discretization we employ is based on a Runge--Kutta method in time, for which the development of parallel solvers is an emerging research area in the literature of numerical methods for time-dependent PDEs. By making use of classical theory of block matrices, one is able to derive a preconditioner for the systems considered. The block structure of the preconditioner allows for parallelism in the time variable, as long as one is able to provide an optimal solver for the system of the stages of the method. We thus propose a preconditioner for the latter system based on a singular value decomposition (SVD) of the (real) Runge--Kutta matrix $A_{\mathrm{RK}} = U \Sigma V^\top$. Supposing $A_{\mathrm{RK}}$ is invertible, we prove that the spectrum of the system for the stages preconditioned by our SVD-based preconditioner is contained within the right-half of the unit circle, under suitable assumptions on the matrix $U^\top V$ (the assumptions are well posed due to the polar decomposition of $A_{\mathrm{RK}}$). We show the numerical efficiency of our SVD-based preconditioner by solving the system of the stages arising from the discretization of the heat equation and the Stokes equations, with sequential time-stepping. Finally, we provide numerical results of the all-at-once approach for both problems, showing the speed-up achieved on a parallel architecture.
High-order implicit shock tracking (fitting) is a class of high-order, optimization-based numerical methods to approximate solutions of conservation laws with non-smooth features by aligning elements of the computational mesh with non-smooth features. This ensures the non-smooth features are perfectly represented by inter-element jumps and high-order basis functions approximate smooth regions of the solution without nonlinear stabilization, which leads to accurate approximations on traditionally coarse meshes. In this work, we introduce a robust implicit shock tracking framework specialized for problems with parameter-dependent lead shocks (i.e., shocks separating a farfield condition from the downstream flow), which commonly arise in high-speed aerodynamics and astrophysics applications. After a shock-aligned mesh is produced at one parameter configuration, all elements upstream of the lead shock are removed and the nodes on the lead shock are positioned for new parameter configurations using the implicit shock tracking solver. The proposed framework can be used for most many-query applications involving parametrized lead shocks such as optimization, uncertainty quantification, parameter sweeps, "what-if" scenarios, or parameter-based continuation. We demonstrate the robustness and flexibility of the framework using a one-dimensional space-time Riemann problem, and two- and three-dimensional supersonic and hypersonic benchmark problems.
On Bakhvalov-type mesh, uniform convergence analysis of finite element method for a 2-D singularly perturbed convection-diffusion problem with exponential layers is still an open problem. Previous attempts have been unsuccessful. The primary challenges are the width of the mesh subdomain in the layer adjacent to the transition point, the restriction of the Dirichlet boundary condition, and the structure of exponential layers. To address these challenges, a novel analysis technique is introduced for the first time, which takes full advantage of the characteristics of interpolation and the connection between the smooth function and the layer function on the boundary. Utilizing this technique in conjunction with a new interpolation featuring a simple structure, uniform convergence of optimal order k+1 under an energy norm can be proven for finite element method of any order k. Numerical experiments confirm our theoretical results.
In Lipschitz domains, we study a Darcy-Forchheimer problem coupled with a singular heat equation by a nonlinear forcing term depending on the temperature. By singular we mean that the heat source corresponds to a Dirac measure. We establish the existence of solutions for a model that allows a diffusion coefficient in the heat equation depending on the temperature. For such a model, we also propose a finite element discretization scheme and provide an a priori convergence analysis. In the case that the aforementioned diffusion coefficient is constant, we devise an a posteriori error estimator and investigate reliability and efficiency properties. We conclude by devising an adaptive loop based on the proposed error estimator and presenting numerical experiments.