Gaussian processes with derivative information are useful in many settings where derivative information is available, including numerous Bayesian optimization and regression tasks that arise in the natural sciences. Incorporating derivative observations, however, comes with a dominating $O(N^3D^3)$ computational cost when training on $N$ points in $D$ input dimensions. This is intractable for even moderately sized problems. While recent work has addressed this intractability in the low-$D$ setting, the high-$N$, high-$D$ setting is still unexplored and of great value, particularly as machine learning problems increasingly become high dimensional. In this paper, we introduce methods to achieve fully scalable Gaussian process regression with derivatives using variational inference. Analogous to the use of inducing values to sparsify the labels of a training set, we introduce the concept of inducing directional derivatives to sparsify the partial derivative information of a training set. This enables us to construct a variational posterior that incorporates derivative information but whose size depends neither on the full dataset size $N$ nor the full dimensionality $D$. We demonstrate the full scalability of our approach on a variety of tasks, ranging from a high dimensional stellarator fusion regression task to training graph convolutional neural networks on Pubmed using Bayesian optimization. Surprisingly, we find that our approach can improve regression performance even in settings where only label data is available.
This paper addresses the task of estimating a covariance matrix under a patternless sparsity assumption. In contrast to existing approaches based on thresholding or shrinkage penalties, we propose a likelihood-based method that regularizes the distance from the covariance estimate to a symmetric sparsity set. This formulation avoids unwanted shrinkage induced by more common norm penalties and enables optimization of the resulting non-convex objective by solving a sequence of smooth, unconstrained subproblems. These subproblems are generated and solved via the proximal distance version of the majorization-minimization principle. The resulting algorithm executes rapidly, gracefully handles settings where the number of parameters exceeds the number of cases, yields a positive definite solution, and enjoys desirable convergence properties. Empirically, we demonstrate that our approach outperforms competing methods by several metrics across a suite of simulated experiments. Its merits are illustrated on an international migration dataset and a classic case study on flow cytometry. Our findings suggest that the marginal and conditional dependency networks for the cell signalling data are more similar than previously concluded.
We propose a generic feature compression method for Approximate Nearest Neighbor Search (ANNS) problems, which speeds up existing ANNS methods in a plug-and-play manner. Specifically, we propose a new network structure called Compression Network with Transformer (CNT) to compress the feature into a low dimensional space, and an inhomogeneous neighborhood relationship preserving (INRP) loss that aims to maintain high search accuracy. In CNT, we use multiple compression projections to cast the feature into many low dimensional spaces, and then use transformer to globally optimize these projections such that the features are well compressed following the guidance from our loss function. The loss function is designed to assign high weights on point pairs that are close in original feature space, and keep their distances in projected space. Keeping these distances helps maintain the eventual top-k retrieval accuracy, and down weighting others creates room for feature compression. In experiments, we run our compression method on public datasets, and use the compressed features in graph based, product quantization and scalar quantization based ANNS solutions. Experimental results show that our compression method can significantly improve the efficiency of these methods while preserves or even improves search accuracy, suggesting its broad potential impact on real world applications.
Pervasive cross-section dependence is increasingly recognized as an appropriate characteristic of economic data and the approximate factor model provides a useful framework for analysis. Assuming a strong factor structure, early work established convergence of the principal component estimates of the factors and loadings to a rotation matrix. This paper shows that the estimates are still consistent and asymptotically normal for a broad range of weaker factor loadings, albeit at slower rates and under additional assumptions on the sample size. Standard inference procedures can be used except in the case of extremely weak loadings which has encouraging implications for empirical work. The simplified proofs are of independent interest.
Bayesian methods have become a popular way to incorporate prior knowledge and a notion of uncertainty into machine learning models. At the same time, the complexity of modern machine learning makes it challenging to comprehend a model's reasoning process, let alone express specific prior assumptions in a rigorous manner. While primarily interested in the former issue, recent developments intransparent machine learning could also broaden the range of prior information that we can provide to complex Bayesian models. Inspired by the idea of self-explaining models, we introduce a corresponding concept for variational GaussianProcesses. On the one hand, our contribution improves transparency for these types of models. More importantly though, our proposed self-explaining variational posterior distribution allows to incorporate both general prior knowledge about a target function as a whole and prior knowledge about the contribution of individual features.
We introduce and illustrate through numerical examples the R package \texttt{SIHR} which handles the statistical inference for (1) linear and quadratic functionals in the high-dimensional linear regression and (2) linear functional in the high-dimensional logistic regression. The focus of the proposed algorithms is on the point estimation, confidence interval construction and hypothesis testing. The inference methods are extended to multiple regression models. We include real data applications to demonstrate the package's performance and practicality.
Incorporating graph side information into recommender systems has been widely used to better predict ratings, but relatively few works have focused on theoretical guarantees. Ahn et al. (2018) firstly characterized the optimal sample complexity in the presence of graph side information, but the results are limited due to strict, unrealistic assumptions made on the unknown latent preference matrix and the structure of user clusters. In this work, we propose a new model in which 1) the unknown latent preference matrix can have any discrete values, and 2) users can be clustered into multiple clusters, thereby relaxing the assumptions made in prior work. Under this new model, we fully characterize the optimal sample complexity and develop a computationally-efficient algorithm that matches the optimal sample complexity. Our algorithm is robust to model errors and outperforms the existing algorithms in terms of prediction performance on both synthetic and real data.
Estimating the density of a continuous random variable X has been studied extensively in statistics, in the setting where n independent observations of X are given a priori and one wishes to estimate the density from that. Popular methods include histograms and kernel density estimators. In this review paper, we are interested instead in the situation where the observations are generated by Monte Carlo simulation from a model. Then, one can take advantage of variance reduction methods such as stratification, conditional Monte Carlo, and randomized quasi-Monte Carlo (RQMC), and obtain a more accurate density estimator than with standard Monte Carlo for a given computing budget. We discuss several ways of doing this, proposed in recent papers, with a focus on methods that exploit RQMC. A first idea is to directly combine RQMC with a standard kernel density estimator. Another one is to adapt a simulation-based derivative estimation method such as smoothed perturbation analysis or the likelihood ratio method to obtain a continuous estimator of the cdf, whose derivative is an unbiased estimator of the density. This can then be combined with RQMC. We summarize recent theoretical results with these approaches and give numerical illustrations of how they improve the convergence of the mean square integrated error.
Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.
Graph structured data are abundant in the real world. Among different graph types, directed acyclic graphs (DAGs) are of particular interest to machine learning researchers, as many machine learning models are realized as computations on DAGs, including neural networks and Bayesian networks. In this paper, we study deep generative models for DAGs, and propose a novel DAG variational autoencoder (D-VAE). To encode DAGs into the latent space, we leverage graph neural networks. We propose an asynchronous message passing scheme that allows encoding the computations on DAGs, rather than using existing simultaneous message passing schemes to encode local graph structures. We demonstrate the effectiveness of our proposed D-VAE through two tasks: neural architecture search and Bayesian network structure learning. Experiments show that our model not only generates novel and valid DAGs, but also produces a smooth latent space that facilitates searching for DAGs with better performance through Bayesian optimization.
We show that the output of a (residual) convolutional neural network (CNN) with an appropriate prior over the weights and biases is a Gaussian process (GP) in the limit of infinitely many convolutional filters, extending similar results for dense networks. For a CNN, the equivalent kernel can be computed exactly and, unlike "deep kernels", has very few parameters: only the hyperparameters of the original CNN. Further, we show that this kernel has two properties that allow it to be computed efficiently; the cost of evaluating the kernel for a pair of images is similar to a single forward pass through the original CNN with only one filter per layer. The kernel equivalent to a 32-layer ResNet obtains 0.84% classification error on MNIST, a new record for GPs with a comparable number of parameters.