Novel view synthesis (NVS) is a challenging task in computer vision that involves synthesizing new views of a scene from a limited set of input images. Neural Radiance Fields (NeRF) have emerged as a powerful approach to address this problem, but they require accurate knowledge of camera \textit{intrinsic} and \textit{extrinsic} parameters. Traditionally, structure-from-motion (SfM) and multi-view stereo (MVS) approaches have been used to extract camera parameters, but these methods can be unreliable and may fail in certain cases. In this paper, we propose a novel technique that leverages unposed images from dynamic datasets, such as the NVIDIA dynamic scenes dataset, to learn camera parameters directly from data. Our approach is highly extensible and can be integrated into existing NeRF architectures with minimal modifications. We demonstrate the effectiveness of our method on a variety of static and dynamic scenes and show that it outperforms traditional SfM and MVS approaches. The code for our method is publicly available at \href{//github.com/redacted/refinerf}{//github.com/redacted/refinerf}. Our approach offers a promising new direction for improving the accuracy and robustness of NVS using NeRF, and we anticipate that it will be a valuable tool for a wide range of applications in computer vision and graphics.
In the context of robotic grasping, object segmentation encounters several difficulties when faced with dynamic conditions such as real-time operation, occlusion, low lighting, motion blur, and object size variability. In response to these challenges, we propose the Graph Mixer Neural Network that includes a novel collaborative contextual mixing layer, applied to 3D event graphs formed on asynchronous events. The proposed layer is designed to spread spatiotemporal correlation within an event graph at four nearest neighbor levels parallelly. We evaluate the effectiveness of our proposed method on the Event-based Segmentation (ESD) Dataset, which includes five unique image degradation challenges, including occlusion, blur, brightness, trajectory, scale variance, and segmentation of known and unknown objects. The results show that our proposed approach outperforms state-of-the-art methods in terms of mean intersection over the union and pixel accuracy. Code available at: //github.com/sanket0707/GNN-Mixer.git
The retrieval model is an indispensable component for real-world knowledge-intensive tasks, e.g., open-domain question answering (ODQA). As separate retrieval skills are annotated for different datasets, recent work focuses on customized methods, limiting the model transferability and scalability. In this work, we propose a modular retriever where individual modules correspond to key skills that can be reused across datasets. Our approach supports flexible skill configurations based on the target domain to boost performance. To mitigate task interference, we design a novel modularization parameterization inspired by sparse Transformer. We demonstrate that our model can benefit from self-supervised pretraining on Wikipedia and fine-tuning using multiple ODQA datasets, both in a multi-task fashion. Our approach outperforms recent self-supervised retrievers in zero-shot evaluations and achieves state-of-the-art fine-tuned retrieval performance on NQ, HotpotQA and OTT-QA.
This paper proposes NeuralEditor that enables neural radiance fields (NeRFs) natively editable for general shape editing tasks. Despite their impressive results on novel-view synthesis, it remains a fundamental challenge for NeRFs to edit the shape of the scene. Our key insight is to exploit the explicit point cloud representation as the underlying structure to construct NeRFs, inspired by the intuitive interpretation of NeRF rendering as a process that projects or "plots" the associated 3D point cloud to a 2D image plane. To this end, NeuralEditor introduces a novel rendering scheme based on deterministic integration within K-D tree-guided density-adaptive voxels, which produces both high-quality rendering results and precise point clouds through optimization. NeuralEditor then performs shape editing via mapping associated points between point clouds. Extensive evaluation shows that NeuralEditor achieves state-of-the-art performance in both shape deformation and scene morphing tasks. Notably, NeuralEditor supports both zero-shot inference and further fine-tuning over the edited scene. Our code, benchmark, and demo video are available at //immortalco.github.io/NeuralEditor.
Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at //github.com/ZrrSkywalker/Personalize-SAM
We present a one-shot method to infer and render a photorealistic 3D representation from a single unposed image (e.g., face portrait) in real-time. Given a single RGB input, our image encoder directly predicts a canonical triplane representation of a neural radiance field for 3D-aware novel view synthesis via volume rendering. Our method is fast (24 fps) on consumer hardware, and produces higher quality results than strong GAN-inversion baselines that require test-time optimization. To train our triplane encoder pipeline, we use only synthetic data, showing how to distill the knowledge from a pretrained 3D GAN into a feedforward encoder. Technical contributions include a Vision Transformer-based triplane encoder, a camera data augmentation strategy, and a well-designed loss function for synthetic data training. We benchmark against the state-of-the-art methods, demonstrating significant improvements in robustness and image quality in challenging real-world settings. We showcase our results on portraits of faces (FFHQ) and cats (AFHQ), but our algorithm can also be applied in the future to other categories with a 3D-aware image generator.
Inferring unknown constraints is a challenging and crucial problem in many robotics applications. When only expert demonstrations are available, it becomes essential to infer the unknown domain constraints to deploy additional agents effectively. In this work, we propose an approach to infer affine constraints in control tasks after observing expert demonstrations. We formulate the constraint inference problem as an inverse optimization problem, and we propose an alternating optimization scheme that infers the unknown constraints by minimizing a KKT residual objective. We demonstrate the effectiveness of our method in a number of simulations, and show that our method can infer less conservative constraints than a recent baseline method while maintaining comparable safety guarantees.
We present a study using new computational methods, based on a novel combination of machine learning for inferring admixture hidden Markov models and probabilistic model checking, to uncover interaction styles in a mobile app. These styles are then used to inform a redesign, which is implemented, deployed, and then analysed using the same methods. The data sets are logged user traces, collected over two six-month deployments of each version, involving thousands of users and segmented into different time intervals. The methods do not assume tasks or absolute metrics such as measures of engagement, but uncover the styles through unsupervised inference of clusters and analysis with probabilistic temporal logic. For both versions there was a clear distinction between the styles adopted by users during the first day/week/month of usage, and during the second and third months, a result we had not anticipated.
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.
We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.