亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local $H^1$ error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.

相關內容

Cross-modal contrastive learning in vision language pretraining (VLP) faces the challenge of (partial) false negatives. In this paper, we study this problem from the perspective of Mutual Information (MI) optimization. It is common sense that InfoNCE loss used in contrastive learning will maximize the lower bound of MI between anchors and their positives, while we theoretically prove that MI involving negatives also matters when noises commonly exist. Guided by a more general lower bound form for optimization, we propose a contrastive learning strategy regulated by progressively refined cross-modal similarity, to more accurately optimize MI between an image/text anchor and its negative texts/images instead of improperly minimizing it. Our method performs competitively on four downstream cross-modal tasks and systematically balances the beneficial and harmful effects of (partial) false negative samples under theoretical guidance.

We propose a novel spectral method for the Allen--Cahn equation on spheres that does not necessarily require quadrature exactness assumptions. Instead of certain exactness degrees, we employ a restricted isometry relation based on the Marcinkiewicz--Zygmund system of quadrature rules to quantify the quadrature error of polynomial integrands. The new method imposes only some conditions on the polynomial degree of numerical solutions to derive the maximum principle and energy stability, and thus, differs substantially from existing methods in the literature that often rely on strict conditions on the time stepping size, Lipschitz property of the nonlinear term, or $L^{\infty}$ boundedness of numerical solutions. Moreover, the new method is suitable for long-time simulations because the time stepping size is independent of the diffusion coefficient in the equation. Inspired by the effective maximum principle recently proposed by Li (Ann. Appl. Math., 37(2): 131--290, 2021), we develop an almost sharp maximum principle that allows controllable deviation of numerical solutions from the sharp bound. Further, we show that the new method is energy stable and equivalent to the Galerkin method if the quadrature rule exhibits sufficient exactness degrees. In addition, we propose an energy-stable mixed-quadrature scheme which works well even with randomly sampled initial condition data. We validate the theoretical results about the energy stability and the almost sharp maximum principle by numerical experiments on the 2-sphere $\mathbb{S}^2$.

The ParaOpt algorithm was recently introduced as a time-parallel solver for optimal-control problems with a terminal-cost objective, and convergence results have been presented for the linear diffusive case with implicit-Euler time integrators. We reformulate ParaOpt for tracking problems and provide generalized convergence analyses for both objectives. We focus on linear diffusive equations and prove convergence bounds that are generic in the time integrators used. For large problem dimensions, ParaOpt's performance depends crucially on having a good preconditioner to solve the arising linear systems. For the case where ParaOpt's cheap, coarse-grained propagator is linear, we introduce diagonalization-based preconditioners inspired by recent advances in the ParaDiag family of methods. These preconditioners not only lead to a weakly-scalable ParaOpt version, but are themselves invertible in parallel, making maximal use of available concurrency. They have proven convergence properties in the linear diffusive case that are generic in the time discretization used, similarly to our ParaOpt results. Numerical results confirm that the iteration count of the iterative solvers used for ParaOpt's linear systems becomes constant in the limit of an increasing processor count. The paper is accompanied by a sequential MATLAB implementation.

Applications in fields ranging from home care to warehouse fulfillment to surgical assistance require robots to reliably manipulate the shape of 3D deformable objects. Analytic models of elastic, 3D deformable objects require numerous parameters to describe the potentially infinite degrees of freedom present in determining the object's shape. Previous attempts at performing 3D shape control rely on hand-crafted features to represent the object shape and require training of object-specific control models. We overcome these issues through the use of our novel DeformerNet neural network architecture, which operates on a partial-view point cloud of the manipulated object and a point cloud of the goal shape to learn a low-dimensional representation of the object shape. This shape embedding enables the robot to learn a visual servo controller that computes the desired robot end-effector action to iteratively deform the object toward the target shape. We demonstrate both in simulation and on a physical robot that DeformerNet reliably generalizes to object shapes and material stiffness not seen during training. Crucially, using DeformerNet, the robot successfully accomplishes three surgical sub-tasks: retraction (moving tissue aside to access a site underneath it), tissue wrapping (a sub-task in procedures like aortic stent placements), and connecting two tubular pieces of tissue (a sub-task in anastomosis).

In this paper, we propose a topology optimization (TO) framework where the design is parameterized by a set of convex polygons. Extending feature mapping methods in TO, the representation allows for direct extraction of the geometry. In addition, the method allows one to impose geometric constraints such as feature size control directly on the polygons that are otherwise difficult to impose in density or level set based approaches. The use of polygons provides for more more varied shapes than simpler primitives like bars, plates, or circles. The polygons are defined as the feasible set of a collection of halfspaces. Varying the halfspace's parameters allows for us to obtain diverse configurations of the polygons. Furthermore, the halfspaces are differentiably mapped onto a background mesh to allow for analysis and gradient driven optimization. The proposed framework is illustrated through numerous examples of 2D structural compliance minimization TO. Some of the key limitations and future research are also summarized.

In this paper, we focus our attention on the high-dimensional double sparse linear regression, that is, a combination of element-wise and group-wise sparsity.To address this problem, we propose an IHT-style (iterative hard thresholding) procedure that dynamically updates the threshold at each step. We establish the matching upper and lower bounds for parameter estimation, showing the optimality of our proposal in the minimax sense. Coupled with a novel sparse group information criterion, we develop a fully adaptive procedure to handle unknown group sparsity and noise levels.We show that our adaptive procedure achieves optimal statistical accuracy with fast convergence. Finally, we demonstrate the superiority of our method by comparing it with several state-of-the-art algorithms on both synthetic and real-world datasets.

Thanks to their universal approximation properties and new efficient training strategies, Deep Neural Networks are becoming a valuable tool for the approximation of mathematical operators. In the present work, we introduce Mesh-Informed Neural Networks (MINNs), a class of architectures specifically tailored to handle mesh based functional data, and thus of particular interest for reduced order modeling of parametrized Partial Differential Equations (PDEs). The driving idea behind MINNs is to embed hidden layers into discrete functional spaces of increasing complexity, obtained through a sequence of meshes defined over the underlying spatial domain. The approach leads to a natural pruning strategy which enables the design of sparse architectures that are able to learn general nonlinear operators. We assess this strategy through an extensive set of numerical experiments, ranging from nonlocal operators to nonlinear diffusion PDEs, where MINNs are compared against more traditional architectures, such as classical fully connected Deep Neural Networks, but also more recent ones, such as DeepONets and Fourier Neural Operators. Our results show that MINNs can handle functional data defined on general domains of any shape, while ensuring reduced training times, lower computational costs, and better generalization capabilities, thus making MINNs very well-suited for demanding applications such as Reduced Order Modeling and Uncertainty Quantification for PDEs.

In this paper we consider the generalized inverse iteration for computing ground states of the Gross-Pitaevskii eigenvector problem (GPE). For that we prove explicit linear convergence rates that depend on the maximum eigenvalue in magnitude of a weighted linear eigenvalue problem. Furthermore, we show that this eigenvalue can be bounded by the first spectral gap of a linearized Gross-Pitaevskii operator, recovering the same rates as for linear eigenvector problems. With this we establish the first local convergence result for the basic inverse iteration for the GPE without damping. We also show how our findings directly generalize to extended inverse iterations, such as the Gradient Flow Discrete Normalized (GFDN) proposed in [W. Bao, Q. Du, SIAM J. Sci. Comput., 25 (2004)] or the damped inverse iteration suggested in [P. Henning, D. Peterseim, SIAM J. Numer. Anal., 53 (2020)]. Our analysis also reveals why the inverse iteration for the GPE does not react favourably to spectral shifts. This empirical observation can now be explained with a blow-up of a weighting function that crucially contributes to the convergence rates. Our findings are illustrated by numerical experiments.

Motivated by an application from geodesy, we introduce a novel clustering problem which is a $k$-center (or k-diameter) problem with a side constraint. For the side constraint, we are given an undirected connectivity graph $G$ on the input points, and a clustering is now only feasible if every cluster induces a connected subgraph in $G$. We call the resulting problems the connected $k$-center problem and the connected $k$-diameter problem. We prove several results on the complexity and approximability of these problems. Our main result is an $O(\log^2{k})$-approximation algorithm for the connected $k$-center and the connected $k$-diameter problem. For Euclidean metrics and metrics with constant doubling dimension, the approximation factor of this algorithm improves to $O(1)$. We also consider the special cases that the connectivity graph is a line or a tree. For the line we give optimal polynomial-time algorithms and for the case that the connectivity graph is a tree, we either give an optimal polynomial-time algorithm or a $2$-approximation algorithm for all variants of our model. We complement our upper bounds by several lower bounds.

Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.

北京阿比特科技有限公司