Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.
Understanding how external stimuli are encoded in distributed neural activity is of significant interest in clinical and basic neuroscience. To address this need, it is essential to develop analytical tools capable of handling limited data and the intrinsic stochasticity present in neural data. In this study, we propose a straightforward Bayesian time series classifier (BTsC) model that tackles these challenges whilst maintaining a high level of interpretability. We demonstrate the classification capabilities of this approach by utilizing neural data to decode colors in a visual task. The model exhibits consistent and reliable average performance of 75.55% on 4 patients' dataset, improving upon state-of-the-art machine learning techniques by about 3.0 percent. In addition to its high classification accuracy, the proposed BTsC model provides interpretable results, making the technique a valuable tool to study neural activity in various tasks and categories. The proposed solution can be applied to neural data recorded in various tasks, where there is a need for interpretable results and accurate classification accuracy.
In this paper, we propose a method for estimating model parameters using Small-Angle Scattering (SAS) data based on the Bayesian inference. Conventional SAS data analyses involve processes of manual parameter adjustment by analysts or optimization using gradient methods. These analysis processes tend to involve heuristic approaches and may lead to local solutions.Furthermore, it is difficult to evaluate the reliability of the results obtained by conventional analysis methods. Our method solves these problems by estimating model parameters as probability distributions from SAS data using the framework of the Bayesian inference. We evaluate the performance of our method through numerical experiments using artificial data of representative measurement target models.From the results of the numerical experiments, we show that our method provides not only high accuracy and reliability of estimation, but also perspectives on the transition point of estimability with respect to the measurement time and the lower bound of the angular domain of the measured data.
Accurate load forecasting plays a vital role in numerous sectors, but accurately capturing the complex dynamics of dynamic power systems remains a challenge for traditional statistical models. For these reasons, time-series models (ARIMA) and deep-learning models (ANN, LSTM, GRU, etc.) are commonly deployed and often experience higher success. In this paper, we analyze the efficacy of the recently developed Transformer-based Neural Network model in Load forecasting. Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism. We apply several metaheuristics namely Differential Evolution to find the optimal hyperparameters of the Transformer-based Neural Network to produce accurate forecasts. Differential Evolution provides scalable, robust, global solutions to non-differentiable, multi-objective, or constrained optimization problems. Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). Our findings demonstrate the potential of metaheuristic-enhanced Transformer-based Neural Network models in Load forecasting accuracy and provide optimal hyperparameters for each model.
We propose a novel method for testing serial independence of object-valued time series in metric spaces, which is more general than Euclidean or Hilbert spaces. The proposed method is fully nonparametric, free of tuning parameters, and can capture all nonlinear pairwise dependence. The key concept used in this paper is the distance covariance in metric spaces, which is extended to auto distance covariance for object-valued time series. Furthermore, we propose a generalized spectral density function to account for pairwise dependence at all lags and construct a Cramer-von Mises type test statistic. New theoretical arguments are developed to establish the asymptotic behavior of the test statistic. A wild bootstrap is also introduced to obtain the critical values of the non-pivotal limiting null distribution. Extensive numerical simulations and two real data applications are conducted to illustrate the effectiveness and versatility of our proposed method.
Robotic navigation in unknown, cluttered environments with limited sensing capabilities poses significant challenges in robotics. Local trajectory optimization methods, such as Model Predictive Path Intergal (MPPI), are a promising solution to this challenge. However, global guidance is required to ensure effective navigation, especially when encountering challenging environmental conditions or navigating beyond the planning horizon. This study presents the GP-MPPI, an online learning-based control strategy that integrates MPPI with a local perception model based on Sparse Gaussian Process (SGP). The key idea is to leverage the learning capability of SGP to construct a variance (uncertainty) surface, which enables the robot to learn about the navigable space surrounding it, identify a set of suggested subgoals, and ultimately recommend the optimal subgoal that minimizes a predefined cost function to the local MPPI planner. Afterward, MPPI computes the optimal control sequence that satisfies the robot and collision avoidance constraints. Such an approach eliminates the necessity of a global map of the environment or an offline training process. We validate the efficiency and robustness of our proposed control strategy through both simulated and real-world experiments of 2D autonomous navigation tasks in complex unknown environments, demonstrating its superiority in guiding the robot safely towards its desired goal while avoiding obstacles and escaping entrapment in local minima. The GPU implementation of GP-MPPI, including the supplementary video, is available at //github.com/IhabMohamed/GP-MPPI.
The design or the optimization of transport systems is a difficult task. This is especially true in the case of the introduction of new transport modes in an existing system. The main reason is, that even small additions and changes result in the emergence of new travel patterns, likely resulting in an adaptation of the travel behavior of multiple other agents in the system. Here we consider the optimization of future Urban Air Mobility services under consideration of effects induced by the new mode to an existing system. We tackle this problem through a bi-level network design approach, in which the discrete decisions of the network design planner are optimized based on the evaluated dynamic demand of the user's mode choices. We solve the activity-based network design problem (AB-NDP) using a Genetic Algorithm on a multi-objective optimization problem while evaluating the dynamic demand with the large-scale Multi-Agent Transport Simulation (MATSim) framework. The proposed bi-level approach is compared against the results of a coverage approach using a static demand method. The bi-level study shows better results for expected UAM demand and total travel time savings across the transportation system. Due to its generic character, the demonstrated utilization of a bi-level method is applicable to other mobility service design questions and to other regions.
Deep-learning models for traffic data prediction can have superior performance in modeling complex functions using a multi-layer architecture. However, a major drawback of these approaches is that most of these approaches do not offer forecasts with uncertainty estimates, which are essential for traffic operations and control. Without uncertainty estimates, it is difficult to place any level of trust to the model predictions, and operational strategies relying on overconfident predictions can lead to worsening traffic conditions. In this study, we propose a Bayesian recurrent neural network framework for uncertainty quantification in traffic prediction with higher generalizability by introducing spectral normalization to its hidden layers. In our paper, we have shown that normalization alters the training process of deep neural networks by controlling the model's complexity and reducing the risk of overfitting to the training data. This, in turn, helps improve the generalization performance of the model on out-of-distribution datasets. Results demonstrate that spectral normalization improves uncertainty estimates and significantly outperforms both the layer normalization and model without normalization in single-step prediction horizons. This improved performance can be attributed to the ability of spectral normalization to better localize the feature space of the data under perturbations. Our findings are especially relevant to traffic management applications, where predicting traffic conditions across multiple locations is the goal, but the availability of training data from multiple locations is limited. Spectral normalization, therefore, provides a more generalizable approach that can effectively capture the underlying patterns in traffic data without requiring location-specific models.
Algorithms for state estimation of humanoid robots usually assume that the feet remain flat and in a constant position while in contact with the ground. However, this hypothesis is easily violated while walking, especially for human-like gaits with heel-toe motion. This reduces the time during which the contact assumption can be used, or requires higher variances to account for errors. In this paper, we present a novel state estimator based on the extended Kalman filter that can properly handle any contact configuration. We consider multiple inertial measurement units (IMUs) distributed throughout the robot's structure, including on both feet, which are used to track multiple bodies of the robot. This multi-IMU instrumentation setup also has the advantage of allowing the deformations in the robot's structure to be estimated, improving the kinematic model used in the filter. The proposed approach is validated experimentally on the exoskeleton Atalante and is shown to present low drift, performing better than similar single-IMU filters. The obtained trajectory estimates are accurate enough to construct elevation maps that have little distortion with respect to the ground truth.
Although Transformer-based methods have significantly improved state-of-the-art results for long-term series forecasting, they are not only computationally expensive but more importantly, are unable to capture the global view of time series (e.g. overall trend). To address these problems, we propose to combine Transformer with the seasonal-trend decomposition method, in which the decomposition method captures the global profile of time series while Transformers capture more detailed structures. To further enhance the performance of Transformer for long-term prediction, we exploit the fact that most time series tend to have a sparse representation in well-known basis such as Fourier transform, and develop a frequency enhanced Transformer. Besides being more effective, the proposed method, termed as Frequency Enhanced Decomposed Transformer ({\bf FEDformer}), is more efficient than standard Transformer with a linear complexity to the sequence length. Our empirical studies with six benchmark datasets show that compared with state-of-the-art methods, FEDformer can reduce prediction error by $14.8\%$ and $22.6\%$ for multivariate and univariate time series, respectively. the code will be released soon.
The U-Net was presented in 2015. With its straight-forward and successful architecture it quickly evolved to a commonly used benchmark in medical image segmentation. The adaptation of the U-Net to novel problems, however, comprises several degrees of freedom regarding the exact architecture, preprocessing, training and inference. These choices are not independent of each other and substantially impact the overall performance. The present paper introduces the nnU-Net ('no-new-Net'), which refers to a robust and self-adapting framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case for taking away superfluous bells and whistles of many proposed network designs and instead focus on the remaining aspects that make out the performance and generalizability of a method. We evaluate the nnU-Net in the context of the Medical Segmentation Decathlon challenge, which measures segmentation performance in ten disciplines comprising distinct entities, image modalities, image geometries and dataset sizes, with no manual adjustments between datasets allowed. At the time of manuscript submission, nnU-Net achieves the highest mean dice scores across all classes and seven phase 1 tasks (except class 1 in BrainTumour) in the online leaderboard of the challenge.