亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We evaluate using Julia as a single language and ecosystem paradigm powered by LLVM to develop workflow components for high-performance computing. We run a Gray-Scott, 2-variable diffusion-reaction application using a memory-bound, 7-point stencil kernel on Frontier, the US Department of Energy's first exascale supercomputer. We evaluate the feasibility, performance, scaling, and trade-offs of (i) the computational kernel on AMD's MI250x GPUs, (ii) weak scaling up to 4,096 MPI processes/GPUs or 512 nodes, (iii) parallel I/O writes using the ADIOS2 library bindings, and (iv) Jupyter Notebooks for interactive data analysis. Our results suggest that although Julia generates a reasonable LLVM-IR kernel, a nearly 50% performance difference exists vs. native AMD HIP stencil codes when running on the GPUs. As expected, we observed near-zero overhead when using MPI and parallel I/O bindings for system-wide installed implementations. Consequently, Julia emerges as a compelling high-performance and high-productivity workflow composition strategy, as measured on the fastest supercomputer in the world.

相關內容

An explosion of work in language is leading to ever-increasing numbers of available natural language processing models, with little understanding of how new models compare to better-understood models. One major reason for this difficulty is saturating benchmark datasets, which may not reflect well differences in model performance in the wild. In this work, we propose a novel framework for comparing two natural language processing models by revealing their shared invariance to interpretable input perturbations that are designed to target a specific linguistic capability (e.g., Synonym-Invariance, Typo-Invariance). Via experiments on models from within the same and across different architecture families, this framework offers a number of insights about how changes in models (e.g., distillation, increase in size, amount of pre-training) affect multiple well-defined linguistic capabilities. Furthermore, we also demonstrate how our framework can enable evaluation of the invariances shared between models that are available as commercial black-box APIs (e.g., InstructGPT family) and models that are relatively better understood (e.g., GPT-2). Across several experiments, we observe that large language models share many of the invariances encoded by models of various sizes, whereas the invariances encoded by large language models are only shared by other large models. Possessing a wide variety of invariances may be a key reason for the recent successes of large language models, and our framework can shed light on the types of invariances that are retained by or emerge in new models.

We combine Kronecker products, and quantitative information flow, to give a novel formal analysis for the fine-grained verification of utility in complex privacy pipelines. The combination explains a surprising anomaly in the behaviour of utility of privacy-preserving pipelines -- that sometimes a reduction in privacy results also in a decrease in utility. We use the standard measure of utility for Bayesian analysis, introduced by Ghosh at al., to produce tractable and rigorous proofs of the fine-grained statistical behaviour leading to the anomaly. More generally, we offer the prospect of formal-analysis tools for utility that complement extant formal analyses of privacy. We demonstrate our results on a number of common privacy-preserving designs.

We study scalable machine learning models for full event reconstruction in high-energy electron-positron collisions based on a highly granular detector simulation. Particle-flow reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters or hits. We compare a graph neural network and kernel-based transformer and demonstrate that both avoid quadratic memory allocation and computational cost while achieving realistic reconstruction. We show that hyperparameter tuning on a supercomputer significantly enhances the physics performance of the models, improving the jet transverse momentum resolution by up to 50% compared to the baseline. The resulting model is highly portable across hardware processors. Finally, we demonstrate that the model can be trained on highly granular inputs consisting of tracks and calorimeter hits, resulting in a competitive physics performance with the baseline. Datasets and software to reproduce the studies are published following the findable, accessible, interoperable, and reusable principles.

This paper introduces an assumption-lean method that constructs valid and efficient lower predictive bounds (LPBs) for survival times with censored data. We build on recent work by Cand\`es et al. (2021), whose approach first subsets the data to discard any data points with early censoring times, and then uses a reweighting technique (namely, weighted conformal inference (Tibshirani et al., 2019)) to correct for the distribution shift introduced by this subsetting procedure. For our new method, instead of constraining to a fixed threshold for the censoring time when subsetting the data, we allow for a covariate-dependent and data-adaptive subsetting step, which is better able to capture the heterogeneity of the censoring mechanism. As a result, our method can lead to LPBs that are less conservative and give more accurate information. We show that in the Type I right-censoring setting, if either of the censoring mechanism or the conditional quantile of survival time is well estimated, our proposed procedure achieves nearly exact marginal coverage, where in the latter case we additionally have approximate conditional coverage. We evaluate the validity and efficiency of our proposed algorithm in numerical experiments, illustrating its advantage when compared with other competing methods. Finally, our method is applied to a real dataset to generate LPBs for users' active times on a mobile app.

While model architectures and training strategies have become more generic and flexible with respect to different data modalities over the past years, a persistent limitation lies in the assumption of fixed quantities and arrangements of input features. This limitation becomes particularly relevant in scenarios where the attributes captured during data acquisition vary across different samples. In this work, we aim at effectively leveraging data with varying features, without the need to constrain the input space to the intersection of potential feature sets or to expand it to their union. We propose a novel architecture that can directly process data without the necessity of aligned feature modalities by learning a general embedding space that captures the relationship between features across data samples with varying sets of features. This is achieved via a set-transformer architecture augmented by feature-encoder layers, thereby enabling the learning of a shared latent feature space from data originating from heterogeneous feature spaces. The advantages of the model are demonstrated for automatic cancer cell detection in acute myeloid leukemia in flow cytometry data, where the features measured during acquisition often vary between samples. Our proposed architecture's capacity to operate seamlessly across incongruent feature spaces is particularly relevant in this context, where data scarcity arises from the low prevalence of the disease. The code is available for research purposes at //github.com/lisaweijler/FATE.

We study optimal data pooling for shared learning in two common maintenance operations: condition-based maintenance and spare parts management. We consider a set of systems subject to Poisson input -- the degradation or demand process -- that are coupled through an a-priori unknown rate. Decision problems involving these systems are high-dimensional Markov decision processes (MDPs) and hence notoriously difficult to solve. We present a decomposition result that reduces such an MDP to two-dimensional MDPs, enabling structural analyses and computations. Leveraging this decomposition, we (i) demonstrate that pooling data can lead to significant cost reductions compared to not pooling, and (ii) show that the optimal policy for the condition-based maintenance problem is a control limit policy, while for the spare parts management problem, it is an order-up-to level policy, both dependent on the pooled data.

Safe reinforcement learning (RL) with hard constraint guarantees is a promising optimal control direction for multi-energy management systems. It only requires the environment-specific constraint functions itself a priori and not a complete model. The project-specific upfront and ongoing engineering efforts are therefore still reduced, better representations of the underlying system dynamics can still be learnt, and modelling bias is kept to a minimum. However, even the constraint functions alone are not always trivial to accurately provide in advance, leading to potentially unsafe behaviour. In this paper, we present two novel advancements: (I) combining the OptLayer and SafeFallback method, named OptLayerPolicy, to increase the initial utility while keeping a high sample efficiency and the possibility to formulate equality constraints. (II) introducing self-improving hard constraints, to increase the accuracy of the constraint functions as more and new data becomes available so that better policies can be learnt. Both advancements keep the constraint formulation decoupled from the RL formulation, so new (presumably better) RL algorithms can act as drop-in replacements. We have shown that, in a simulated multi-energy system case study, the initial utility is increased to 92.4% (OptLayerPolicy) compared to 86.1% (OptLayer) and that the policy after training is increased to 104.9% (GreyOptLayerPolicy) compared to 103.4% (OptLayer) - all relative to a vanilla RL benchmark. Although introducing surrogate functions into the optimisation problem requires special attention, we conclude that the newly presented GreyOptLayerPolicy method is the most advantageous.

This paper introduces an extended tensor decomposition (XTD) method for model reduction. The proposed method is based on a sparse non-separated enrichment to the conventional tensor decomposition, which is expected to improve the approximation accuracy and the reducibility (compressibility) in highly nonlinear and singular cases. The proposed XTD method can be a powerful tool for solving nonlinear space-time parametric problems. The method has been successfully applied to parametric elastic-plastic problems and real time additive manufacturing residual stress predictions with uncertainty quantification. Furthermore, a combined XTD-SCA (self-consistent clustering analysis) strategy has been presented for multi-scale material modeling, which enables real time multi-scale multi-parametric simulations. The efficiency of the method is demonstrated with comparison to finite element analysis. The proposed method enables a novel framework for fast manufacturing and material design with uncertainties.

We study two classic variants of block-structured integer programming. Two-stage stochastic programs are integer programs of the form $\{A_i \mathbf{x} + D_i \mathbf{y}_i = \mathbf{b}_i\textrm{ for all }i=1,\ldots,n\}$, where $A_i$ and $D_i$ are bounded-size matrices. On the other hand, $n$-fold programs are integer programs of the form $\{{\sum_{i=1}^n C_i\mathbf{y}_i=\mathbf{a}} \textrm{ and } D_i\mathbf{y}_i=\mathbf{b}_i\textrm{ for all }i=1,\ldots,n\}$, where again $C_i$ and $D_i$ are bounded-size matrices. It is known that solving these kind of programs is fixed-parameter tractable when parameterized by the maximum dimension among the relevant matrices $A_i,C_i,D_i$ and the maximum absolute value of any entry appearing in the constraint matrix. We show that the parameterized tractability results for two-stage stochastic and $n$-fold programs persist even when one allows large entries in the global part of the program. More precisely, we prove that: - The feasibility problem for two-stage stochastic programs is fixed-parameter tractable when parameterized by the dimensions of matrices $A_i,D_i$ and by the maximum absolute value of the entries of matrices $D_i$. That is, we allow matrices $A_i$ to have arbitrarily large entries. - The linear optimization problem for $n$-fold integer programs that are uniform -- all matrices $C_i$ are equal -- is fixed-parameter tractable when parameterized by the dimensions of matrices $C_i$ and $D_i$ and by the maximum absolute value of the entries of matrices $D_i$. That is, we require that $C_i=C$ for all $i=1,\ldots,n$, but we allow $C$ to have arbitrarily large entries. In the second result, the uniformity assumption is necessary; otherwise the problem is $\mathsf{NP}$-hard already when the parameters take constant values. Both our algorithms are weakly polynomial: the running time is measured in the total bitsize of the input.

We study stability properties of the expected utility function in Bayesian optimal experimental design. We provide a framework for this problem in a non-parametric setting and prove a convergence rate of the expected utility with respect to a likelihood perturbation. This rate is uniform over the design space and its sharpness in the general setting is demonstrated by proving a lower bound in a special case. To make the problem more concrete we proceed by considering non-linear Bayesian inverse problems with Gaussian likelihood and prove that the assumptions set out for the general case are satisfied and regain the stability of the expected utility with respect to perturbations to the observation map. Theoretical convergence rates are demonstrated numerically in three different examples.

北京阿比特科技有限公司