亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modeling with multidimensional arrays, or tensors, often presents a problem due to high dimensionality. In addition, these structures typically exhibit inherent sparsity, requiring the use of regularization methods to properly characterize an association between a tensor covariate and a scalar response. We propose a Bayesian method to efficiently model a scalar response with a tensor covariate using the Tucker tensor decomposition in order to retain the spatial relationship within a tensor coefficient, while reducing the number of parameters varying within the model and applying regularization methods. Simulated data are analyzed to compare the model to recently proposed methods. A neuroimaging analysis using data from the Alzheimer's Data Neuroimaging Initiative is included to illustrate the benefits of the model structure in making inference.

相關內容

We propose a supervised principal component regression method for relating functional responses with high dimensional predictors. Unlike the conventional principal component analysis, the proposed method builds on a newly defined expected integrated residual sum of squares, which directly makes use of the association between the functional response and the predictors. Minimizing the integrated residual sum of squares gives the supervised principal components, which is equivalent to solving a sequence of nonconvex generalized Rayleigh quotient optimization problems. We reformulate the nonconvex optimization problems into a simultaneous linear regression with a sparse penalty to deal with high dimensional predictors. Theoretically, we show that the reformulated regression problem can recover the same supervised principal subspace under certain conditions. Statistically, we establish non-asymptotic error bounds for the proposed estimators when the covariate covariance is bandable. We demonstrate the advantages of the proposed method through numerical experiments and an application to the Human Connectome Project fMRI data.

Informative cluster size (ICS) arises in situations with clustered data where a latent relationship exists between the number of participants in a cluster and the outcome measures. Although this phenomenon has been sporadically reported in statistical literature for nearly two decades now, further exploration is needed in certain statistical methodologies to avoid potentially misleading inferences. For inference about population quantities without covariates, inverse cluster size reweightings are often employed to adjust for ICS. Further, to study the effect of covariates on disease progression described by a multistate model, the pseudo-value regression technique has gained popularity in time-to-event data analysis. We seek to answer the question: "How to apply pseudo-value regression to clustered time-to-event data when cluster size is informative?" ICS adjustment by the reweighting method can be performed in two steps; estimation of marginal functions of the multistate model and fitting the estimating equations based on pseudo-value responses, leading to four possible strategies. We present theoretical arguments and thorough simulation experiments to ascertain the correct strategy for adjusting for ICS. A further extension of our methodology is implemented to include informativeness induced by the intra-cluster group size. We demonstrate the methods in two real-world applications: (i) to determine predictors of tooth survival in a periodontal study, and (ii) to identify indicators of ambulatory recovery in spinal cord injury patients who participated in locomotor-training rehabilitation.

We study a class of dynamical systems modelled as Markov chains that admit an invariant distribution via the corresponding transfer, or Koopman, operator. While data-driven algorithms to reconstruct such operators are well known, their relationship with statistical learning is largely unexplored. We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system. We consider the restriction of this operator to a reproducing kernel Hilbert space and introduce a notion of risk, from which different estimators naturally arise. We link the risk with the estimation of the spectral decomposition of the Koopman operator. These observations motivate a reduced-rank operator regression (RRR) estimator. We derive learning bounds for the proposed estimator, holding both in i.i.d. and non i.i.d. settings, the latter in terms of mixing coefficients. Our results suggest RRR might be beneficial over other widely used estimators as confirmed in numerical experiments both for forecasting and mode decomposition.

Censored quantile regression (CQR) has become a valuable tool to study the heterogeneous association between a possibly censored outcome and a set of covariates, yet computation and statistical inference for CQR have remained a challenge for large-scale data with many covariates. In this paper, we focus on a smoothed martingale-based sequential estimating equations approach, to which scalable gradient-based algorithms can be applied. Theoretically, we provide a unified analysis of the smoothed sequential estimator and its penalized counterpart in increasing dimensions. When the covariate dimension grows with the sample size at a sublinear rate, we establish the uniform convergence rate (over a range of quantile indexes) and provide a rigorous justification for the validity of a multiplier bootstrap procedure for inference. In high-dimensional sparse settings, our results considerably improve the existing work on CQR by relaxing an exponential term of sparsity. We also demonstrate the advantage of the smoothed CQR over existing methods with both simulated experiments and data applications.

Regularized regression models are well studied and, under appropriate conditions, offer fast and statistically interpretable results. However, large data in many applications are heterogeneous in the sense of harboring distributional differences between latent groups. Then, the assumption that the conditional distribution of response Y given features X is the same for all samples may not hold. Furthermore, in scientific applications, the covariance structure of the features may contain important signals and its learning is also affected by latent group structure. We propose a class of mixture models for paired data (X, Y) that couples together the distribution of X (using sparse graphical models) and the conditional Y | X (using sparse regression models). The regression and graphical models are specific to the latent groups and model parameters are estimated jointly (hence the name "regularized joint mixtures"). This allows signals in either or both of the feature distribution and regression model to inform learning of latent structure and provides automatic control of confounding by such structure. Estimation is handled via an expectation-maximization algorithm, whose convergence is established theoretically. We illustrate the key ideas via empirical examples. An R package is available at //github.com/k-perrakis/regjmix.

Graphical models, used to express conditional dependence between random variables observed at various nodes, are used extensively in many fields such as genetics, neuroscience, and social network analysis. While most current statistical methods for estimating graphical models focus on scalar data, there is interest in estimating analogous dependence structures when the data observed at each node are functional, such as signals or images. In this paper, we propose a fully Bayesian regularization scheme for estimating functional graphical models. We first consider a direct Bayesian analog of the functional graphical lasso proposed by Qiao et al. (2019). We then propose a regularization strategy via the graphical horseshoe. We compare these approaches via simulation study and apply our proposed functional graphical horseshoe to two motivating applications, electroencephalography data for comparing brain activation between an alcoholic group and controls, as well as changes in structural connectivity in the presence of traumatic brain injury (TBI). Our results yield insight into how the brain attempts to compensate for disconnected networks after injury.

Feature selection plays a vital role in promoting the classifier's performance. However, current methods ineffectively distinguish the complex interaction in the selected features. To further remove these hidden negative interactions, we propose a GA-like dynamic probability (GADP) method with mutual information which has a two-layer structure. The first layer applies the mutual information method to obtain a primary feature subset. The GA-like dynamic probability algorithm, as the second layer, mines more supportive features based on the former candidate features. Essentially, the GA-like method is one of the population-based algorithms so its work mechanism is similar to the GA. Different from the popular works which frequently focus on improving GA's operators for enhancing the search ability and lowering the converge time, we boldly abandon GA's operators and employ the dynamic probability that relies on the performance of each chromosome to determine feature selection in the new generation. The dynamic probability mechanism significantly reduces the parameter number in GA that making it easy to use. As each gene's probability is independent, the chromosome variety in GADP is more notable than in traditional GA, which ensures GADP has a wider search space and selects relevant features more effectively and accurately. To verify our method's superiority, we evaluate our method under multiple conditions on 15 datasets. The results demonstrate the outperformance of the proposed method. Generally, it has the best accuracy. Further, we also compare the proposed model to the popular heuristic methods like POS, FPA, and WOA. Our model still owns advantages over them.

Traffic speed is central to characterizing the fluidity of the road network. Many transportation applications rely on it, such as real-time navigation, dynamic route planning, and congestion management. Rapid advances in sensing and communication techniques make traffic speed detection easier than ever. However, due to sparse deployment of static sensors or low penetration of mobile sensors, speeds detected are incomplete and far from network-wide use. In addition, sensors are prone to error or missing data due to various kinds of reasons, speeds from these sensors can become highly noisy. These drawbacks call for effective techniques to recover credible estimates from the incomplete data. In this work, we first identify the problem as a spatiotemporal kriging problem and propose a unified graph embedded tensor (SGET) learning framework featuring both low-rankness and multi-dimensional correlations for network-wide traffic speed kriging under limited observations. To be specific, three types of speed correlation including temporal continuity, temporal periodicity, and spatial proximity are carefully chosen. We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging. By performing experiments on two public million-level traffic speed datasets, we finally draw the conclusion and find our proposed SGET achieves the state-of-the-art kriging performance even under low observation rates, while at the same time saving more than half computing time compared with baseline methods. Some insights into spatiotemporal traffic data kriging at the network level are provided as well.

Many real-world problems can be naturally described by mathematical formulas. The task of finding formulas from a set of observed inputs and outputs is called symbolic regression. Recently, neural networks have been applied to symbolic regression, among which the transformer-based ones seem to be the most promising. After training the transformer on a large number of formulas (in the order of days), the actual inference, i.e., finding a formula for new, unseen data, is very fast (in the order of seconds). This is considerably faster than state-of-the-art evolutionary methods. The main drawback of transformers is that they generate formulas without numerical constants, which have to be optimized separately, so yielding suboptimal results. We propose a transformer-based approach called SymFormer, which predicts the formula by outputting the individual symbols and the corresponding constants simultaneously. This leads to better performance in terms of fitting the available data. In addition, the constants provided by SymFormer serve as a good starting point for subsequent tuning via gradient descent to further improve the performance. We show on a set of benchmarks that SymFormer outperforms two state-of-the-art methods while having faster inference.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

北京阿比特科技有限公司