Cardiovascular diseases remain the leading global cause of mortality. Age is an important covariate whose effect is most easily investigated in a healthy cohort to properly distinguish the former from disease-related changes. Traditionally, most of such insights have been drawn from the analysis of electrocardiogram (ECG) feature changes in individuals as they age. However, these features, while informative, may potentially obscure underlying data relationships. In this paper we present the following contributions: (1) We employ a deep-learning model and a tree-based model to analyze ECG data from a robust dataset of healthy individuals across varying ages in both raw signals and ECG feature format. (2) We use explainable AI methods to identify the most discriminative ECG features across age groups.(3) Our analysis with tree-based classifiers reveals age-related declines in inferred breathing rates and identifies notably high SDANN values as indicative of elderly individuals, distinguishing them from younger adults. (4) Furthermore, the deep-learning model underscores the pivotal role of the P-wave in age predictions across all age groups, suggesting potential changes in the distribution of different P-wave types with age. These findings shed new light on age-related ECG changes, offering insights that transcend traditional feature-based approaches.
Parkinson's disease ranks as the second most prevalent neurodegenerative disorder globally. This research aims to develop a system leveraging Mixed Reality capabilities for tracking and assessing eye movements. In this paper, we present a medical scenario and outline the development of an application designed to capture eye-tracking signals through Mixed Reality technology for the evaluation of neurodegenerative diseases. Additionally, we introduce a pipeline for extracting clinically relevant features from eye-gaze analysis, describing the capabilities of the proposed system from a medical perspective. The study involved a cohort of healthy control individuals and patients suffering from Parkinson's disease, showcasing the feasibility and potential of the proposed technology for non-intrusive monitoring of eye movement patterns for the diagnosis of neurodegenerative diseases. Clinical relevance - Developing a non-invasive biomarker for Parkinson's disease is urgently needed to accurately detect the disease's onset. This would allow for the timely introduction of neuroprotective treatment at the earliest stage and enable the continuous monitoring of intervention outcomes. The ability to detect subtle changes in eye movements allows for early diagnosis, offering a critical window for intervention before more pronounced symptoms emerge. Eye tracking provides objective and quantifiable biomarkers, ensuring reliable assessments of disease progression and cognitive function. The eye gaze analysis using Mixed Reality glasses is wireless, facilitating convenient assessments in both home and hospital settings. The approach offers the advantage of utilizing hardware that requires no additional specialized attachments, enabling examinations through personal eyewear.
Model-based clustering of moderate or large dimensional data is notoriously difficult. We propose a model for simultaneous dimensionality reduction and clustering by assuming a mixture model for a set of latent scores, which are then linked to the observations via a Gaussian latent factor model. This approach was recently investigated by Chandra et al. (2023). The authors use a factor-analytic representation and assume a mixture model for the latent factors. However, performance can deteriorate in the presence of model misspecification. Assuming a repulsive point process prior for the component-specific means of the mixture for the latent scores is shown to yield a more robust model that outperforms the standard mixture model for the latent factors in several simulated scenarios. The repulsive point process must be anisotropic to favor well-separated clusters of data, and its density should be tractable for efficient posterior inference. We address these issues by proposing a general construction for anisotropic determinantal point processes. We illustrate our model in simulations as well as a plant species co-occurrence dataset.
Penrose tilings are the most famous aperiodic tilings, and they have been studied extensively. In particular, patterns composed with hexagons ($H$), boats ($B$) and stars ($S$) were soon exhibited and many physicists published on what they later called $HBS$ tilings, but no article or book combines all we know about them. This work is done here, before introducing new decorations and properties including explicit substitutions. For the latter, the star comes in three versions so we have 5 prototiles in what we call the Star tileset. Yet this set yields exactly the strict $HBS$ tilings formed using 3 tiles decorated with either the usual decorations (arrows) or Ammann bar markings for instance. Another new tileset called Gemstones is also presented, derived from the Star tileset.
We consider the weak convergence of the Euler-Maruyama approximation for Schr\"odinger-F\"ollmer diffusions, which are solutions of Schr\"odinger bridge problems and can be used for sampling from given distributions. We show that the distribution of the terminal random variable of the time-discretized process weakly converges to the target one under mild regularity conditions.
Recurrent neural networks (RNNs) notoriously struggle to learn long-term memories, primarily due to vanishing and exploding gradients. The recent success of state-space models (SSMs), a subclass of RNNs, to overcome such difficulties challenges our theoretical understanding. In this paper, we delve into the optimization challenges of RNNs and discover that, as the memory of a network increases, changes in its parameters result in increasingly large output variations, making gradient-based learning highly sensitive, even without exploding gradients. Our analysis further reveals the importance of the element-wise recurrence design pattern combined with careful parametrizations in mitigating this effect. This feature is present in SSMs, as well as in other architectures, such as LSTMs. Overall, our insights provide a new explanation for some of the difficulties in gradient-based learning of RNNs and why some architectures perform better than others.
Identifying areas in a landscape where individuals have higher probability of becoming infected with a pathogen is a crucial step towards disease management. We perform a novel epidemiological tomography for the estimation of landscape propensity to disease infection, using GPS animal tracks in a manner analogous to tomographic techniques in Positron Emission Tomography. Our study data consists of individual tracks of white-tailed deer (Odocoileus virginianus) and three exotic Cervidae species moving freely in a high-fenced game preserve over given time periods. A serological test was performed on each individual to measure antibody concentration of epizootic hemorrhagic disease viruses (EHDV) at the beginning and at the end of each tracking period. EHDV is a vector-borne viral disease indirectly transmitted between ruminant hosts by biting midges. We model the data as a binomial linear inverse problem, where spatial coherence is enforced with a total variation regularization. The smoothness of the reconstructed propensity map is selected by the quantile universal threshold, which can also test the null hypothesis that the propensity map is spatially constant. We apply our method to simulated and real data, showing good statistical properties during simulations and consistent results and interpretations compared to intensive field estimations.
Robotic exploration has long captivated researchers aiming to map complex environments efficiently. Techniques such as potential fields and frontier exploration have traditionally been employed in this pursuit, primarily focusing on solitary agents. Recent advancements have shifted towards optimizing exploration efficiency through multiagent systems. However, many existing approaches overlook critical real-world factors, such as broadcast range limitations, communication costs, and coverage overlap. This paper addresses these gaps by proposing a distributed maze exploration strategy (CU-LVP) that assumes constrained broadcast ranges and utilizes Voronoi diagrams for better area partitioning. By adapting traditional multiagent methods to distributed environments with limited broadcast ranges, this study evaluates their performance across diverse maze topologies, demonstrating the efficacy and practical applicability of the proposed method. The code and experimental results supporting this study are available in the following repository: //github.com/manouslinard/multiagent-exploration/.
Predictive posterior densities (PPDs) are of interest in approximate Bayesian inference. Typically, these are estimated by simple Monte Carlo (MC) averages using samples from the approximate posterior. We observe that the signal-to-noise ratio (SNR) of such estimators can be extremely low. An analysis for exact inference reveals SNR decays exponentially as there is an increase in (a) the mismatch between training and test data, (b) the dimensionality of the latent space, or (c) the size of the test data relative to the training data. Further analysis extends these results to approximate inference. To remedy the low SNR problem, we propose replacing simple MC sampling with importance sampling using a proposal distribution optimized at test time on a variational proxy for the SNR and demonstrate that this yields greatly improved estimates.
Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.