Confidential computing has gained prominence due to the escalating volume of data-driven applications (e.g., machine learning and big data) and the acute desire for secure processing of sensitive data, particularly, across distributed environments, such as edge-to-cloud continuum. Provided that the works accomplished in this emerging area are scattered across various research fields, this paper aims at surveying the fundamental concepts, and cutting-edge software and hardware solutions developed for confidential computing using trusted execution environments, homomorphic encryption, and secure enclaves. We underscore the significance of building trust in both hardware and software levels and delve into their applications particularly for machine learning (ML) applications. While substantial progress has been made, there are some barely-explored areas that need extra attention from the researchers and practitioners in the community to improve confidentiality aspects, develop more robust attestation mechanisms, and to address vulnerabilities of the existing trusted execution environments. Providing a comprehensive taxonomy of the confidential computing landscape, this survey enables researchers to advance this field to ultimately ensure the secure processing of users' sensitive data across a multitude of applications and computing tiers.
Effective representation of data is crucial in various machine learning tasks, as it captures the underlying structure and context of the data. Embeddings have emerged as a powerful technique for data representation, but evaluating their quality and capacity to preserve structural and contextual information remains a challenge. In this paper, we address this need by proposing a method to measure the \textit{representation capacity} of embeddings. The motivation behind this work stems from the importance of understanding the strengths and limitations of embeddings, enabling researchers and practitioners to make informed decisions in selecting appropriate embedding models for their specific applications. By combining extrinsic evaluation methods, such as classification and clustering, with t-SNE-based neighborhood analysis, such as neighborhood agreement and trustworthiness, we provide a comprehensive assessment of the representation capacity. Additionally, the use of optimization techniques (bayesian optimization) for weight optimization (for classification, clustering, neighborhood agreement, and trustworthiness) ensures an objective and data-driven approach in selecting the optimal combination of metrics. The proposed method not only contributes to advancing the field of embedding evaluation but also empowers researchers and practitioners with a quantitative measure to assess the effectiveness of embeddings in capturing structural and contextual information. For the evaluation, we use $3$ real-world biological sequence (proteins and nucleotide) datasets and performed representation capacity analysis of $4$ embedding methods from the literature, namely Spike2Vec, Spaced $k$-mers, PWM2Vec, and AutoEncoder.
This paper investigates the issue of an adequate loss function in the optimization of machine learning models used in the forecasting of financial time series for the purpose of algorithmic investment strategies (AIS) construction. We propose the Mean Absolute Directional Loss (MADL) function, solving important problems of classical forecast error functions in extracting information from forecasts to create efficient buy/sell signals in algorithmic investment strategies. Finally, based on the data from two different asset classes (cryptocurrencies: Bitcoin and commodities: Crude Oil), we show that the new loss function enables us to select better hyperparameters for the LSTM model and obtain more efficient investment strategies, with regard to risk-adjusted return metrics on the out-of-sample data.
With the development of sensing technologies, vehicle-to-everything (V2X) communications, edge computing paradigm, vehicular cyber-physical systems (VCPS) are emerging as the most fundamental platform for realizing future intelligent transportation systems (ITSs). In particular, the construction of logical views at the edge nodes based on heterogeneous information sensing and uploading are critical to the realization of VCPS. However, a higher-quality view in terms of timeliness and accuracy may require higher cost on sensing and uploading. In view of this, this paper is dedicated to striking a balance between the quality and the cost for constructing logical views of VCPS. Specifically, we first derive an information sensing model based on multi-class M/G/1 priority queue and a data uploading model based on reliability-guaranteed vehicle-to-infrastructure (V2I) communications. On this basis, we design two metrics, namely, age of view (AoV) and cost of view (CoV), simultaneously. Then, we formulate a bi-objective problem to maximize the AoV and minimize the CoV. Further, we propose a distributed distributional deep deterministic policy gradient (D4PG) solution to determine sensing information, frequency, uploading priority, transmission power, and V2I bandwidth. Finally, we build a simulation model and give a comprehensive performance evaluation, and the simulation results conclusively demonstrate the superiority of the proposed solution.
Recommender systems usually leverage multi-task learning methods to simultaneously optimize several objectives because of the multi-faceted user behavior data. The typical way of conducting multi-task learning is to establish appropriate parameter sharing across multiple tasks at lower layers while reserving a separate task tower for each task at upper layers. Since the task towers exert direct impact on the prediction results, we argue that the architecture of standalone task towers is sub-optimal for promoting positive knowledge sharing. Accordingly, we propose the framework of Deep Mutual Learning across task towers, which is compatible with various backbone multi-task networks. Extensive offline experiments and online AB tests are conducted to evaluate and verify the proposed approach's effectiveness.
Privacy is important when dealing with sensitive personal information in machine learning models, which require large data sets for training. In the energy field, access to household prosumer energy data is crucial for energy predictions to support energy grid management and large-scale adoption of renewables however citizens are often hesitant to grant access to cloud-based machine learning models. Federated learning has been proposed as a solution to privacy challenges however report issues in generating the global prediction model due to data heterogeneity, variations in generation patterns, and the high number of parameters leading to even lower prediction accuracy. This paper addresses these challenges by introducing FedWOA a novel federated learning model that employs the Whale Optimization Algorithm to aggregate global prediction models from the weights of local LTSM neural network models trained on prosumer energy data. The proposed solution identifies the optimal vector of weights in the search spaces of the local models to construct the global shared model and then is subsequently transmitted to the local nodes to improve the prediction quality at the prosumer site while for handling non-IID data K-Means was used for clustering prosumers with similar scale of energy data. The evaluation results on prosumers energy data have shown that FedWOA can effectively enhance the accuracy of energy prediction models accuracy by 25% for MSE and 16% for MAE compared to FedAVG while demonstrating good convergence and reduced loss.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.
The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework ClipBERT that enables affordable end-to-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that ClipBERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second generic domain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available at //github.com/jayleicn/ClipBERT