亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conventional inversion of the discrete Fourier transform (DFT) requires all DFT coefficients to be known. When the DFT coefficients of a rasterized image (represented as a matrix) are known only within a pass band, the original matrix cannot be uniquely recovered. In many cases of practical importance, the matrix is binary and its elements can be reduced to either 0 or 1. This is the case, for example, for the commonly used QR codes. The {\it a priori} information that the matrix is binary can compensate for the missing high-frequency DFT coefficients and restore uniqueness of image recovery. This paper addresses, both theoretically and numerically, the problem of recovery of blurred images without any known structure whose high-frequency DFT coefficients have been irreversibly lost by utilizing the binarity constraint. We investigate theoretically the smallest band limit for which unique recovery of a generic binary matrix is still possible. Uniqueness results are proved for images of sizes $N_1 \times N_2$, $N_1 \times N_1$, and $N_1^\alpha\times N_1^\alpha$, where $N_1 \neq N_2$ are prime numbers and $\alpha>1$ an integer. Inversion algorithms are proposed for recovering the matrix from its band-limited (blurred) version. The algorithms combine integer linear programming methods with lattice basis reduction techniques and significantly outperform naive implementations. The algorithm efficiently and reliably reconstructs severely blurred $29 \times 29$ binary matrices with only $11\times 11 = 121$ DFT coefficients.

相關內容

We propose a novel approach to numerically approximate McKean-Vlasov stochastic differential equations (MV-SDE) using stochastic gradient descent (SGD) while avoiding the use of interacting particle systems. The technique of SGD is deployed to solve a Euclidean minimization problem, which is obtained by first representing the MV-SDE as a minimization problem over the set of continuous functions of time, and then by approximating the domain with a finite-dimensional subspace. Convergence is established by proving certain intermediate stability and moment estimates of the relevant stochastic processes (including the tangent ones). Numerical experiments illustrate the competitive performance of our SGD based method compared to the IPS benchmarks. This work offers a theoretical foundation for using the SGD method in the context of numerical approximation of MV-SDEs, and provides analytical tools to study its stability and convergence.

This document presents adequate formal terminology for the mathematical specification of a subset of Agent Based Models (ABMs) in the field of Demography. The simulation of the targeted ABMs follows a fixedstep single-clocked pattern. The proposed terminology further improves the model understanding and can act as a stand-alone protocol for the specification and optionally the documentation of a significant set of (demographic) ABMs. Nevertheless, it is imaginable the this terminology can serve as an inspiring basis for further improvement to the largely-informal widely-used model documentation and communication O.D.D. protocol [Grimm and et al., 2020, Amouroux et al., 2010] to reduce many sources of ambiguity which hinder model replications by other modelers. A published demographic model documentation, largely simplified version of the Lone Parent Model [Gostoli and Silverman, 2020] is separately published in [Elsheikh, 2023c] as illustration for the formal terminology presented here. The model was implemented in the Julia language [Elsheikh, 2023b] based on the Agents.jl julia package [Datseris et al., 2022].

Automatically highlighting words that cause semantic differences between two documents could be useful for a wide range of applications. We formulate recognizing semantic differences (RSD) as a token-level regression task and study three unsupervised approaches that rely on a masked language model. To assess the approaches, we begin with basic English sentences and gradually move to more complex, cross-lingual document pairs. Our results show that an approach based on word alignment and sentence-level contrastive learning has a robust correlation to gold labels. However, all unsupervised approaches still leave a large margin of improvement. Code to reproduce our experiments is available at //github.com/ZurichNLP/recognizing-semantic-differences

This article investigates a local discontinuous Galerkin (LDG) method for one-dimensional and two-dimensional singularly perturbed reaction-diffusion problems on a Shishkin mesh. During this process, due to the inability of the energy norm to fully capture the behavior of the boundary layers appearing in the solutions, a balanced norm is introduced. By designing novel numerical fluxes and constructing special interpolations, optimal convergences under the balanced norm are achieved in both 1D and 2D cases. Numerical experiments support the main theoretical conclusions.

We present a relational representation of odd Sugihara chains. The elements of the algebra are represented as weakening relations over a particular poset which consists of two densely embedded copies of the rationals. Our construction mimics that of Maddux (2010) where a relational representation of the even Sugihara chains is given. An order automorphism between the two copies of the rationals is the key to ensuring that the identity element of the monoid is fixed by the involution.

Many attempts have been made at estimating discrete emotions (calmness, anxiety, boredom, surprise, anger) and continuous emotional measures commonly used in psychology, namely `valence' (The pleasantness of the emotion being displayed) and `arousal' (The intensity of the emotion being displayed). Existing methods to estimate arousal and valence rely on learning from data sets, where an expert annotator labels every image frame. Access to an expert annotator is not always possible, and the annotation can also be tedious. Hence it is more practical to obtain self-reported arousal and valence values directly from the human in a real-time Human-Robot collaborative setting. Hence this paper provides an emotion data set (HRI-AVC) obtained while conducting a human-robot interaction (HRI) task. The self-reported pair of labels in this data set is associated with a set of image frames. This paper also proposes a spatial and temporal attention-based network to estimate arousal and valence from this set of image frames. The results show that an attention-based network can estimate valence and arousal on the HRI-AVC data set even when Arousal and Valence values are unavailable per frame.

A metric tensor for Riemann manifold Monte Carlo particularly suited for non-linear Bayesian hierarchical models is proposed. The metric tensor is built from symmetric positive semidefinite log-density gradient covariance (LGC) matrices, which are also proposed and further explored here. The LGCs generalize the Fisher information matrix by measuring the joint information content and dependence structure of both a random variable and the parameters of said variable. Consequently, positive definite Fisher/LGC-based metric tensors may be constructed not only from the observation likelihoods as is current practice, but also from arbitrarily complicated non-linear prior/latent variable structures, provided the LGC may be derived for each conditional distribution used to construct said structures. The proposed methodology is highly automatic and allows for exploitation of any sparsity associated with the model in question. When implemented in conjunction with a Riemann manifold variant of the recently proposed numerical generalized randomized Hamiltonian Monte Carlo processes, the proposed methodology is highly competitive, in particular for the more challenging target distributions associated with Bayesian hierarchical models.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司