Since the recent introduction of several viable vaccines for SARS-CoV-2, vaccination uptake has become the key factor that will determine our success in containing the COVID-19 pandemic. We argue that game theory and social network models should be used to guide decisions pertaining to vaccination programmes for the best possible results. In the months following the introduction of vaccines, their availability and the human resources needed to run the vaccination programmes have been scarce in many countries. Vaccine hesitancy is also being encountered from some sections of the general public. We emphasize that decision-making under uncertainty and imperfect information, and with only conditionally optimal outcomes, is a unique forte of established game-theoretic modelling. Therefore, we can use this approach to obtain the best framework for modelling and simulating vaccination prioritization and uptake that will be readily available to inform important policy decisions for the optimal control of the COVID-19 pandemic.
Although the recent rise and uptake of COVID-19 vaccines in the United States has been encouraging, there continues to be significant vaccine hesitancy in various geographic and demographic clusters of the adult population. Surveys, such as the one conducted by Gallup over the past year, can be useful in determining vaccine hesitancy, but can be expensive to conduct and do not provide real-time data. At the same time, the advent of social media suggests that it may be possible to get vaccine hesitancy signals at an aggregate level (such as at the level of zip codes) by using machine learning models and socioeconomic (and other) features from publicly available sources. It is an open question at present whether such an endeavor is feasible, and how it compares to baselines that only use constant priors. To our knowledge, a proper methodology and evaluation results using real data has also not been presented. In this article, we present such a methodology and experimental study, using publicly available Twitter data collected over the last year. Our goal is not to devise novel machine learning algorithms, but to evaluate existing and established models in a comparative framework. We show that the best models significantly outperform constant priors, and can be set up using open-source tools.
One of the most notable global transportation trends is the accelerated pace of development in vehicle automation technologies. Uncertainty surrounds the future of automated mobility as there is no clear consensus on potential adoption patterns, ownership versus shared use status and travel impacts. Adding to this uncertainty is the impact of the COVID-19 pandemic that has triggered profound changes in mobility behaviors as well as accelerated the adoption of new technologies at an unprecedented rate. This study examines the impact of the COVID-19 pandemic on willingness to adopt the emerging new technology of self-driving vehicles. Using data from a survey disseminated in June 2020 to 700 respondents in contiguous United States, we perform a difference-in-difference regression to analyze the shift in willingness to use autonomous vehicles as part of a shared fleet before and during the pandemic. The results reveal that the COVID-19 pandemic has a positive and highly significant impact on consideration of autonomous vehicles. This shift is present regardless of techsavviness, gender or political views. Individuals who are younger, left-leaning and frequent users of shared modes of travel are expected to become more likely to use autonomous vehicles once offered. Understanding the effects of these attributes on the increase in consideration of AVs is important for policy making, as these effects provide a guide to predicting adoption of autonomous vehicles - once available - and to identify segments of the population likely to be more resistant to adopting AVs.
Digital contact tracing has emerged as a viable tool supplementing manual contact tracing. To date, more than 100 contact tracing applications have been published to slow down the spread of highly contagious Covid-19. Despite subtle variabilities among these applications, all of them achieve contact tracing by manipulating the following three components: a) use a personal device to identify the user while designing a secure protocol to anonymize the user's identity; b) leverage networking technologies to analyze and store the data; c) exploit rich sensing features on the user device to detect the interaction among users and thus estimate the exposure risk. This paper reviews the current digital contact tracing based on these three components. We focus on two personal devices that are intimate to the user: smartphones and wearables. We discuss the centralized and decentralized networking approaches that use to facilitate the data flow. Lastly, we investigate the sensing feature available on smartphones and wearables to detect the proximity between any two users and present experiments comparing the proximity sensing performance between these two personal devices.
In the management of most chronic conditions characterized by the lack of universally effective treatments, adaptive treatment strategies (ATSs) have been growing in popularity as they offer a more individualized approach, and sequential multiple assignment randomized trials (SMARTs) have gained attention as the most suitable clinical trial design to formalize the study of these strategies. While the number of SMARTs has increased in recent years, their design has remained limited to the frequentist setting, which may not fully or appropriately account for uncertainty in design parameters and hence not yield appropriate sample size recommendations. Specifically, standard frequentist formulae rely on several assumptions that can be easily misspecified. The Bayesian framework offers a straightforward path to alleviate some of these concerns. In this paper, we provide calculations in a Bayesian setting to allow more realistic and robust estimates that account for uncertainty in inputs through the `two priors' approach. Additionally, compared to the standard formulae, this methodology allows us to rely on fewer assumptions, integrate pre-trial knowledge, and switch the focus from the standardized effect size to the minimal detectable difference. The proposed methodology is evaluated in a thorough simulation study and is implemented to estimate the sample size for a full-scale SMART of an Internet-Based Adaptive Stress Management intervention based on a pilot SMART conducted on cardiovascular disease patients from two Canadian provinces.
The 2019 Coronavirus disease (COVID-19) pandemic, caused by a quick dissemination of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has had a deep impact worldwide, both in terms of the loss of human life and the economic and social disruption. The use of digital technologies has been seen as an important effort to combat the pandemic and one of such technologies is contact tracing applications. These applications were successfully employed to face other infectious diseases, thus they have been used during the current pandemic. However, the use of contact tracing poses several privacy concerns since it is necessary to store and process data which can lead to the user/device identification as well as location and behavior tracking. These concerns are even more relevant when considering nationwide implementations since they can lead to mass surveillance by authoritarian governments. Despite the restrictions imposed by data protection laws from several countries, there are still doubts on the preservation of the privacy of the users. In this article, we analyze the privacy features in national contact tracing COVID-19 applications considering their intrinsic characteristics. As a case study, we discuss in more depth the Brazilian COVID-19 application Coronav\'irus-SUS, since Brazil is one of the most impacted countries by the current pandemic. Finally, as we believe contact tracing will continue to be employed as part of the strategy for the current and potential future pandemics, we present key research challenges.
While the long-term effects of COVID-19 are yet to be determined, its immediate impact on crowdfunding is nonetheless significant. This study takes a computational approach to more deeply comprehend this change. Using a unique data set of all the campaigns published over the past two years on GoFundMe, we explore the factors that have led to the successful funding of a crowdfunding project. In particular, we study a corpus of crowdfunded projects, analyzing cover images and other variables commonly present on crowdfunding sites. Furthermore, we construct a classifier and a regression model to assess the significance of features based on XGBoost. In addition, we employ counterfactual analysis to investigate the causality between features and the success of crowdfunding. More importantly, sentiment analysis and the paired sample t-test are performed to examine the differences in crowdfunding campaigns before and after the COVID-19 outbreak that started in March 2020. First, we note that there is significant racial disparity in crowdfunding success. Second, we find that sad emotion expressed through the campaign's description became significant after the COVID-19 outbreak. Considering all these factors, our findings shed light on the impact of COVID-19 on crowdfunding campaigns.
Despite the central role of self-assembled groups in animal and human societies, statistical tools to explain their composition are limited. We introduce a statistical framework for cross-sectional observations of groups with exclusive membership to illuminate the social and organizational mechanisms that bring people together. Drawing from stochastic models for networks and partitions, the proposed framework introduces an exponential family of distributions for partitions. We derive its main mathematical properties and suggest strategies to specify and estimate such models. A case study on hackathon events applies the developed framework to the study of mechanisms underlying the formation of self-assembled project teams.
Despite the existence of formal guarantees for learning-based control approaches, the relationship between data and control performance is still poorly understood. In this paper, we propose a Lyapunov-based measure for quantifying the impact of data on the certifiable control performance. By modeling unknown system dynamics through Gaussian processes, we can determine the interrelation between model uncertainty and satisfaction of stability conditions. This allows us to directly asses the impact of data on the provable stationary control performance, and thereby the value of the data for the closed-loop system performance. Our approach is applicable to a wide variety of unknown nonlinear systems that are to be controlled by a generic learning-based control law, and the results obtained in numerical simulations indicate the efficacy of the proposed measure.
In this paper we refer to the Open Web to the set of services offered freely to Internet users, representing a pillar of modern societies. Despite its importance for society, it is unknown how the COVID-19 pandemic is affecting the Open Web. In this paper, we address this issue, focusing our analysis on Spain, one of the countries which have been most impacted by the pandemic. On the one hand, we study the impact of the pandemic in the financial backbone of the Open Web, the online advertising business. To this end, we leverage concepts from Supply-Demand economic theory to perform a careful analysis of the elasticity in the supply of ad-spaces to the financial shortage of the online advertising business and its subsequent reduction in ad spaces' price. On the other hand, we analyze the distribution of the Open Web composition across business categories and its evolution during the COVID-19 pandemic. These analyses are conducted between Jan 1st and Dec 31st, 2020, using a reference dataset comprising information from more than 18 billion ad spaces. Our results indicate that the Open Web has experienced a moderate shift in its composition across business categories. However, this change is not produced by the financial shortage of the online advertising business, because as our analysis shows, the Open Web's supply of ad spaces is inelastic (i.e., insensitive) to the sustained low-price of ad spaces during the pandemic. Instead, existing evidence suggests that the reported shift in the Open Web composition is likely due to the change in the users' online behavior (e.g., browsing and mobile apps utilization patterns).
The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiological imaging using chest radiography. Motivated by this, a number of artificial intelligence (AI) systems based on deep learning have been proposed and results have been shown to be quite promising in terms of accuracy in detecting patients infected with COVID-19 using chest radiography images. However, to the best of the authors' knowledge, these developed AI systems have been closed source and unavailable to the research community for deeper understanding and extension, and unavailable for public access and use. Therefore, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest radiography images that is open source and available to the general public. We also describe the chest radiography dataset leveraged to train COVID-Net, which we will refer to as COVIDx and is comprised of 5941 posteroanterior chest radiography images across 2839 patient cases from two open access data repositories. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.