亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the central role of self-assembled groups in animal and human societies, statistical tools to explain their composition are limited. We introduce a statistical framework for cross-sectional observations of groups with exclusive membership to illuminate the social and organizational mechanisms that bring people together. Drawing from stochastic models for networks and partitions, the proposed framework introduces an exponential family of distributions for partitions. We derive its main mathematical properties and suggest strategies to specify and estimate such models. A case study on hackathon events applies the developed framework to the study of mechanisms underlying the formation of self-assembled project teams.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 可理解性 · 相關系數 · CASE · ·
2021 年 10 月 4 日

Since the World Health Organization announced the COVID-19 pandemic in March 2020, curbing the spread of the virus has become an international priority. It has greatly affected people's lifestyles. In this article, we observe and analyze the impact of the pandemic on people's lives using changes in smartphone application usage. First, through observing the daily usage change trends of all users during the pandemic, we can understand and analyze the effects of restrictive measures and policies during the pandemic on people's lives. In addition, it is also helpful for the government and health departments to take more appropriate restrictive measures in the case of future pandemics. Second, we defined the usage change features and found 9 different usage change patterns during the pandemic according to clusters of users and show the diversity of daily usage changes. It helps to understand and analyze the different impacts of the pandemic and restrictive measures on different types of people in more detail. Finally, according to prediction models, we discover the main related factors of each usage change type from user preferences and demographic information. It helps to predict changes in smartphone activity during future pandemics or when other restrictive measures are implemented, which may become a new indicator to judge and manage the risks of measures or events.

Generative moment matching networks (GMMNs) are introduced as dependence models for the joint innovation distribution of multivariate time series (MTS). Following the popular copula-GARCH approach for modeling dependent MTS data, a framework based on a GMMN-GARCH approach is presented. First, ARMA-GARCH models are utilized to capture the serial dependence within each univariate marginal time series. Second, if the number of marginal time series is large, principal component analysis (PCA) is used as a dimension-reduction step. Last, the remaining cross-sectional dependence is modeled via a GMMN, the main contribution of this work. GMMNs are highly flexible and easy to simulate from, which is a major advantage over the copula-GARCH approach. Applications involving yield curve modeling and the analysis of foreign exchange-rate returns demonstrate the utility of the GMMN-GARCH approach, especially in terms of producing better empirical predictive distributions and making better probabilistic forecasts.

The severity of the coronavirus pandemic necessitates the need of effective administrative decisions. Over 4 lakh people in India succumbed to COVID-19, with over 3 crore confirmed cases, and still counting. The threat of a plausible third wave continues to haunt millions. In this ever changing dynamic of the virus, predictive modeling methods can serve as an integral tool. The pandemic has further triggered an unprecedented usage of social media. This paper aims to propose a method for harnessing social media, specifically Twitter, to predict the upcoming scenarios related to COVID-19 cases. In this study, we seek to understand how the surges in COVID-19 related tweets can indicate rise in the cases. This prospective analysis can be utilised to aid administrators about timely resource allocation to lessen the severity of the damage. Using word embeddings to capture the semantic meaning of tweets, we identify Significant Dimensions (SDs).Our methodology predicts the rise in cases with a lead time of 15 days and 30 days with R2 scores of 0.80 and 0.62 respectively. Finally, we explain the thematic utility of the SDs.

Despite much discussion in HCI research about how individual differences likely determine computer users' personal information management (PIM) practices, the extent of the influence of several important factors remains unclear, including users' personalities, spatial abilities, and the different software used to manage their collections. We therefore analyse data from prior CHI work to explore (1) associations of people's file collections with personality and spatial ability, and (2) differences between collections managed with different operating systems and file managers. We find no notable associations between users' attributes and their collections, and minimal predictive power, but do find considerable and surprising differences across operating systems. We discuss these findings and how they can inform future research.

Reliable pedestrian crash avoidance mitigation (PCAM) systems are crucial components of safe autonomous vehicles (AVs). The sequential nature of the vehicle-pedestrian interaction, i.e., where immediate decisions of one agent directly influence the following decisions of the other agent, is an often neglected but important aspect. In this work, we model the corresponding interaction sequence as a Markov decision process (MDP) that is solved by deep reinforcement learning (DRL) algorithms to define the PCAM system's policy. The simulated driving scenario is based on an AV acting as a DRL agent driving along an urban street, facing a pedestrian at an unmarked crosswalk who tries to cross. Since modeling realistic crossing behavior of the pedestrian is challenging, we introduce two levels of intelligent pedestrian behavior: While the baseline model follows a predefined strategy, our advanced model captures continuous learning and the inherent uncertainty in human behavior by defining the pedestrian as a second DRL agent, i.e., we introduce a deep multi-agent reinforcement learning (DMARL) problem. The presented PCAM system with different levels of intelligent pedestrian behavior is benchmarked according to the agents' collision rate and the resulting traffic flow efficiency. In this analysis, our focus lies on evaluating the influence of observation noise on the decision making of the agents. The results show that the AV is able to completely mitigate collisions under the majority of the investigated conditions and that the DRL-based pedestrian model indeed learns a more human-like crossing behavior.

This tutorial shows how to build, fit, and criticize disease transmission models in Stan, and should be useful to researchers interested in modeling the SARS-CoV-2 pandemic and other infectious diseases in a Bayesian framework. Bayesian modeling provides a principled way to quantify uncertainty and incorporate both data and prior knowledge into the model estimates. Stan is an expressive probabilistic programming language that abstracts the inference and allows users to focus on the modeling. As a result, Stan code is readable and easily extensible, which makes the modeler's work more transparent. Furthermore, Stan's main inference engine, Hamiltonian Monte Carlo sampling, is amiable to diagnostics, which means the user can verify whether the obtained inference is reliable. In this tutorial, we demonstrate how to formulate, fit, and diagnose a compartmental transmission model in Stan, first with a simple Susceptible-Infected-Recovered (SIR) model, then with a more elaborate transmission model used during the SARS-CoV-2 pandemic. We also cover advanced topics which can further help practitioners fit sophisticated models; notably, how to use simulations to probe the model and priors, and computational techniques to scale-up models based on ordinary differential equations.

In this paper, we write the time-varying parameter (TVP) regression model involving K explanatory variables and T observations as a constant coefficient regression model with KT explanatory variables. In contrast with much of the existing literature which assumes coefficients to evolve according to a random walk, a hierarchical mixture model on the TVPs is introduced. The resulting model closely mimics a random coefficients specification which groups the TVPs into several regimes. These flexible mixtures allow for TVPs that feature a small, moderate or large number of structural breaks. We develop computationally efficient Bayesian econometric methods based on the singular value decomposition of the KT regressors. In artificial data, we find our methods to be accurate and much faster than standard approaches in terms of computation time. In an empirical exercise involving inflation forecasting using a large number of predictors, we find our models to forecast better than alternative approaches and document different patterns of parameter change than are found with approaches which assume random walk evolution of parameters.

Data modeling is a process of developing a model to design and develop a data system that supports an organization s various business processes. A conceptual data model represents a technology-independent specification of structure of data to be stored within a database. The model aims at providing richer expressiveness and incorporating a set of semantics to (a) support the design, control, and integrity parts of the data stored in data management structures and (b) coordinate viewing of connections and ideas on a database. The described structure of the data is often represented in an entity-relationship (ER) model, which was one of the first data-modeling techniques and is likely to continue to be a popular way of characterizing entity classes, attributes and relationships. This paper is an attempt to examine the basic ER modeling notions to analyze the concepts to which they refer as well as ways to represent them. In such a mission, we apply a new modeling methodology (thinging machine; TM) to ER in terms of its fundamental building constructs, representation entities, relationships and attributes. The goal of this venture is to further the understanding of data models and enrich their semantics. Three specific contributions to modeling in this context are incorporated: (a) using the TM model s five generic actions to inject processing in the ER structure; (b) relating the single ontological element of TM modeling (i.e., a thing/machine or thimac) to ER entities and relationships; and (c) proposing a high-level integrated, extended ER model that includes structural and time-oriented notions (e.g., events or behavior).

This paper provides empirical concerns about post-hoc explanations of black-box ML models, one of the major trends in AI explainability (XAI), by showing its lack of interpretability and societal consequences. Using a representative consumer panel to test our assumptions, we report three main findings. First, we show that post-hoc explanations of black-box model tend to give partial and biased information on the underlying mechanism of the algorithm and can be subject to manipulation or information withholding by diverting users' attention. Secondly, we show the importance of tested behavioral indicators, in addition to self-reported perceived indicators, to provide a more comprehensive view of the dimensions of interpretability. This paper contributes to shedding new light on the actual theoretical debate between intrinsically transparent AI models and post-hoc explanations of black-box complex models-a debate which is likely to play a highly influential role in the future development and operationalization of AI systems.

Entity alignment aims to identify equivalent entity pairs from different Knowledge Graphs (KGs), which is essential in integrating multi-source KGs. Recently, with the introduction of GNNs into entity alignment, the architectures of recent models have become more and more complicated. We even find two counter-intuitive phenomena within these methods: (1) The standard linear transformation in GNNs is not working well. (2) Many advanced KG embedding models designed for link prediction task perform poorly in entity alignment. In this paper, we abstract existing entity alignment methods into a unified framework, Shape-Builder & Alignment, which not only successfully explains the above phenomena but also derives two key criteria for an ideal transformation operation. Furthermore, we propose a novel GNNs-based method, Relational Reflection Entity Alignment (RREA). RREA leverages Relational Reflection Transformation to obtain relation specific embeddings for each entity in a more efficient way. The experimental results on real-world datasets show that our model significantly outperforms the state-of-the-art methods, exceeding by 5.8%-10.9% on Hits@1.

北京阿比特科技有限公司