Unlike conventional grid and mesh based methods for solving partial differential equations (PDEs), neural networks have the potential to break the curse of dimensionality, providing approximate solutions to problems where using classical solvers is difficult or impossible. While global minimization of the PDE residual over the network parameters works well for boundary value problems, catastrophic forgetting impairs the applicability of this approach to initial value problems (IVPs). In an alternative local-in-time approach, the optimization problem can be converted into an ordinary differential equation (ODE) on the network parameters and the solution propagated forward in time; however, we demonstrate that current methods based on this approach suffer from two key issues. First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors. Second, as the ODE methods scale cubically with the number of model parameters, they are restricted to small neural networks, significantly limiting their ability to represent intricate PDE initial conditions and solutions. Building on these insights, we develop Neural IVP, an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters, enabling us to evolve the dynamics of challenging PDEs with neural networks.
In this work we propose an extension of physics informed supervised learning strategies to parametric partial differential equations. Indeed, even if the latter are indisputably useful in many applications, they can be computationally expensive most of all in a real-time and many-query setting. Thus, our main goal is to provide a physics informed learning paradigm to simulate parametrized phenomena in a small amount of time. The physics information will be exploited in many ways, in the loss function (standard physics informed neural networks), as an augmented input (extra feature employment) and as a guideline to build an effective structure for the neural network (physics informed architecture). These three aspects, combined together, will lead to a faster training phase and to a more accurate parametric prediction. The methodology has been tested for several equations and also in an optimal control framework.
The Monge-Amp\`ere equation is a fully nonlinear partial differential equation (PDE) of fundamental importance in analysis, geometry and in the applied sciences. In this paper we solve the Dirichlet problem associated with the Monge-Amp\`ere equation using neural networks and we show that an ansatz using deep input convex neural networks can be used to find the unique convex solution. As part of our analysis we study the effect of singularities, discontinuities and noise in the source function, we consider nontrivial domains, and we investigate how the method performs in higher dimensions. We investigate the convergence numerically and present error estimates based on a stability result. We also compare this method to an alternative approach in which standard feed-forward networks are used together with a loss function which penalizes lack of convexity.
In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.
Bayesian neural networks often approximate the weight-posterior with a Gaussian distribution. However, practical posteriors are often, even locally, highly non-Gaussian, and empirical performance deteriorates. We propose a simple parametric approximate posterior that adapts to the shape of the true posterior through a Riemannian metric that is determined by the log-posterior gradient. We develop a Riemannian Laplace approximation where samples naturally fall into weight-regions with low negative log-posterior. We show that these samples can be drawn by solving a system of ordinary differential equations, which can be done efficiently by leveraging the structure of the Riemannian metric and automatic differentiation. Empirically, we demonstrate that our approach consistently improves over the conventional Laplace approximation across tasks. We further show that, unlike the conventional Laplace approximation, our method is not overly sensitive to the choice of prior, which alleviates a practical pitfall of current approaches.
This paper introduces an approach to decoupling singularly perturbed boundary value problems for fourth-order ordinary differential equations that feature a small positive parameter $\epsilon$ multiplying the highest derivative. We specifically examine Lidstone boundary conditions and demonstrate how to break down fourth-order differential equations into a system of second-order problems, with one lacking the parameter and the other featuring $\epsilon$ multiplying the highest derivative. To solve this system, we propose a mixed finite element algorithm and incorporate the Shishkin mesh scheme to capture the solution near boundary layers. Our solver is both direct and of high accuracy, with computation time that scales linearly with the number of grid points. We present numerical results to validate the theoretical results and the accuracy of our method.
In this paper, we present a novel hybrid method for solving a Stokes interface problem in a regular domain with jump discontinuities on an interface. Our approach combines the expressive power of neural networks with the convergence of finite difference schemes to achieve efficient implementations and accurate results. The key concept of our method is to decompose the solution into two parts: the singular part and the regular part. We employ neural networks to approximate the singular part, which captures the jump discontinuities across the interface. We then utilize a finite difference scheme to approximate the regular part, which handles the smooth variations of the solution in that regular domain. To validate the effectiveness of our approach, we present two- and three-dimensional examples to demonstrate the accuracy and convergence of the proposed method, and show that our proposed hybrid method provides an innovative and reliable approach to tackle Stokes interface problems.
The design of autonomous agents that can interact effectively with other agents without prior coordination is a core problem in multi-agent systems. Type-based reasoning methods achieve this by maintaining a belief over a set of potential behaviours for the other agents. However, current methods are limited in that they assume full observability of the state and actions of the other agent or do not scale efficiently to larger problems with longer planning horizons. Addressing these limitations, we propose Partially Observable Type-based Meta Monte-Carlo Planning (POTMMCP) - an online Monte-Carlo Tree Search based planning method for type-based reasoning in large partially observable environments. POTMMCP incorporates a novel meta-policy for guiding search and evaluating beliefs, allowing it to search more effectively to longer horizons using less planning time. We show that our method converges to the optimal solution in the limit and empirically demonstrate that it effectively adapts online to diverse sets of other agents across a range of environments. Comparisons with the state-of-the art method on problems with up to $10^{14}$ states and $10^8$ observations indicate that POTMMCP is able to compute better solutions significantly faster.
In this paper, we propose a novel, computationally efficient reduced order method to solve linear parabolic inverse source problems. Our approach provides accurate numerical solutions without relying on specific training data. The forward solution is constructed using a Krylov sequence, while the source term is recovered via the conjugate gradient (CG) method. Under a weak regularity assumption on the solution of the parabolic partial differential equations (PDEs), we establish convergence of the forward solution and provide a rigorous error estimate for our method. Numerical results demonstrate that our approach offers substantial computational savings compared to the traditional finite element method (FEM) and retains equivalent accuracy.
Using Bayesian methods for extreme value analysis offers an alternative to frequentist ones, with several advantages such as easily dealing with parametric uncertainty or studying irregular models. However, computations can be challenging and the efficiency of algorithms can be altered by poor parametrization choices. The focus is on the Poisson process characterization of univariate extremes and outline two key benefits of an orthogonal parameterization. First, Markov chain Monte Carlo convergence is improved when applied on orthogonal parameters. This analysis relies on convergence diagnostics computed on several simulations. Second, orthogonalization also helps deriving Jeffreys and penalized complexity priors, and establishing posterior propriety thereof. The proposed framework is applied to return level estimation of Garonne flow data (France).
This work investigates the use of a Deep Neural Network (DNN) to perform an estimation of the Weapon Engagement Zone (WEZ) maximum launch range. The WEZ allows the pilot to identify an airspace in which the available missile has a more significant probability of successfully engaging a particular target, i.e., a hypothetical area surrounding an aircraft in which an adversary is vulnerable to a shot. We propose an approach to determine the WEZ of a given missile using 50,000 simulated launches in variate conditions. These simulations are used to train a DNN that can predict the WEZ when the aircraft finds itself on different firing conditions, with a coefficient of determination of 0.99. It provides another procedure concerning preceding research since it employs a non-discretized model, i.e., it considers all directions of the WEZ at once, which has not been done previously. Additionally, the proposed method uses an experimental design that allows for fewer simulation runs, providing faster model training.