亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a situation that multiple monitoring applications (each with a different sensor-monitor pair) compete for a common service resource such as a communication link. Each sensor reports the latest state of its own time-varying information source to its corresponding monitor, incurring queueing and processing delays at the shared resource. The primary performance metric of interest is the age of information (AoI) of each sensor-monitor pair, which is defined as the elapsed time from the generation of the information currently displayed on the monitor. Although the multi-source first-come first-served (FCFS) M/GI/1 queue is one of the most fundamental model to describe such competing sensors, its exact analysis has been an open problem for years. In this paper, we show that the Laplace-Stieltjes transform (LST) of the stationary distribution of the AoI in this model, as well as the mean AoI, is given by a simple explicit formula, utilizing the double Laplace transform of the transient workload in the M/GI/1 queue.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 語言模型化 · MoDELS · LLaMA · 大語言模型 ·
2024 年 5 月 20 日

Reading comprehension tests are used in a variety of applications, reaching from education to assessing the comprehensibility of simplified texts. However, creating such tests manually and ensuring their quality is difficult and time-consuming. In this paper, we explore how large language models (LLMs) can be used to generate and evaluate multiple-choice reading comprehension items. To this end, we compiled a dataset of German reading comprehension items and developed a new protocol for human and automatic evaluation, including a metric we call text informativity, which is based on guessability and answerability. We then used this protocol and the dataset to evaluate the quality of items generated by Llama 2 and GPT-4. Our results suggest that both models are capable of generating items of acceptable quality in a zero-shot setting, but GPT-4 clearly outperforms Llama 2. We also show that LLMs can be used for automatic evaluation by eliciting item reponses from them. In this scenario, evaluation results with GPT-4 were the most similar to human annotators. Overall, zero-shot generation with LLMs is a promising approach for generating and evaluating reading comprehension test items, in particular for languages without large amounts of available data.

The curse-of-dimensionality taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high-dimensional PDEs, as Richard E. Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerically partial differential equations (PDEs) in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. We develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces corresponding to different dimensions and randomly samples a subset of these dimensional pieces in each iteration of training PINNs. We prove theoretically the convergence and other desired properties of the proposed method. We demonstrate in various diverse tests that the proposed method can solve many notoriously hard high-dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr\"{o}dinger equations in tens of thousands of dimensions very fast on a single GPU using the PINNs mesh-free approach. Notably, we solve nonlinear PDEs with nontrivial, anisotropic, and inseparable solutions in 100,000 effective dimensions in 12 hours on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, it can be applied to any current and future variants of PINNs to scale them up for arbitrary high-dimensional PDEs.

Classifying public tenders is a useful task for both companies that are invited to participate and for inspecting fraudulent activities. To facilitate the task for both participants and public administrations, the European Union presented a common taxonomy (\textit{Common Procurement Vocabulary}, CPV) which is mandatory for tenders of certain importance; however, the contracts in which a CPV label is mandatory are the minority compared to all the Public Administrations activities. Classifying over a real-world taxonomy introduces some difficulties that can not be ignored. First of all, some fine-grained classes have an insufficient (if any) number of observations in the training set, while other classes are far more frequent (even thousands of times) than the average. To overcome those difficulties, we present a zero-shot approach, based on a pre-trained language model that relies only on label description and respects the label taxonomy. To train our proposed model, we used industrial data, which comes from \url{contrattipubblici.org}, a service by \href{//spaziodati.eu}{SpazioDati s.r.l}. that collects public contracts stipulated in Italy in the last 25 years. Results show that the proposed model achieves better performance in classifying low-frequent classes compared to three different baselines, and is also able to predict never-seen classes.

The relay channel, consisting of a source-destination pair along with a relay, is a fundamental component of cooperative communications. While the capacity of a general relay channel remains unknown, various relaying strategies, including compress-and-forward (CF), have been proposed. In CF, the relay forwards a quantized version of its received signal to the destination. Given the correlated signals at the relay and destination, distributed compression techniques, such as Wyner--Ziv coding, can be harnessed to utilize the relay-to-destination link more efficiently. Leveraging recent advances in neural network-based distributed compression, we revisit the relay channel problem and integrate a learned task-aware Wyner--Ziv compressor into a primitive relay channel with a finite-capacity out-of-band relay-to-destination link. The resulting neural CF scheme demonstrates that our compressor recovers binning of the quantized indices at the relay, mimicking the optimal asymptotic CF strategy, although no structure exploiting the knowledge of source statistics was imposed into the design. The proposed neural CF, employing finite order modulation, operates closely to the rate achievable in a primitive relay channel with a Gaussian codebook. We showcase the advantages of exploiting the correlated destination signal for relay compression through various neural CF architectures that involve end-to-end training of the compressor and the demodulator components. Our learned task-oriented compressors provide the first proof-of-concept work toward interpretable and practical neural CF relaying schemes.

We introduce and characterize the operational diversity order (ODO) in fading channels, as a proxy to the classical notion of diversity order at any arbitrary operational signal-to-noise ratio (SNR). Thanks to this definition, relevant insights are brought up in a number of cases: (i) We quantify that in line-of-sight scenarios an increased diversity order is attainable compared to that achieved asymptotically; (ii) this effect is attenuated, but still visible, in the presence of an additional dominant specular component; (iii) we confirm that the decay slope in Rayleigh product channels increases very slowly and never fully achieves unitary slope for finite values of SNR.

Efficient and robust data clustering remains a challenging task in the field of data analysis. Recent efforts have explored the integration of granular-ball (GB) computing with clustering algorithms to address this challenge, yielding promising results. However, existing methods for generating GBs often rely on single indicators to measure GB quality and employ threshold-based or greedy strategies, potentially leading to GBs that do not accurately capture the underlying data distribution. To address these limitations, this article introduces a novel GB generation method. The originality of this method lies in leveraging the principle of justifiable granularity to measure the quality of a GB for clustering tasks. To be precise, we define the coverage and specificity of a GB and introduce a comprehensive measure for assessing GB quality. Utilizing this quality measure, the method incorporates a binary tree pruning-based strategy and an anomaly detection method to determine the best combination of sub-GBs for each GB and identify abnormal GBs, respectively. Compared to previous GB generation methods, the new method maximizes the overall quality of generated GBs while ensuring alignment with the data distribution, thereby enhancing the rationality of the generated GBs. Experimental results obtained from both synthetic and publicly available datasets underscore the effectiveness of the proposed GB generation method, showcasing improvements in clustering accuracy and normalized mutual information.

We define a graph-based rate optimization problem and consider its computation, which provides a unified approach to the computation of various theoretical limits, such as the (conditional) graph entropy, rate-distortion functions and capacity-cost functions with two-sided information. Our contributions are twofold. On the theoretical side, we simplify the graph-based problem by constructing explicit graph contractions in some special cases. These efforts reduce the number of decision variables in the optimization problem. Graph characterizations for rate-distortion and capacity-cost functions with two-sided information are simplified by specializing the results. On the computational side, we design an alternating minimization algorithm for the graph-based problem, which deals with the inequality constraint by a flexible multiplier update strategy. Moreover, deflation techniques are introduced, so that the computing time can be largely reduced. Theoretical analysis shows that the algorithm converges to an optimal solution. The accuracy and efficiency of the algorithm are illustrated by numerical experiments.

Datasets in which measurements of two (or more) types are obtained from a common set of samples arise in many scientific applications. A common problem in the exploratory analysis of such data is to identify groups of features of different data types that are strongly associated. A bimodule is a pair (A,B) of feature sets from two data types such that the aggregate cross-correlation between the features in A and those in B is large. A bimodule (A,B) is stable if A coincides with the set of features that have significant aggregate correlation with the features in B, and vice-versa. This paper proposes an iterative-testing based bimodule search procedure (BSP) to identify stable bimodules. Compared to existing methods for detecting cross-correlated features, BSP was the best at recovering true bimodules with sufficient signal, while limiting the false discoveries. In addition, we applied BSP to the problem of expression quantitative trait loci (eQTL) analysis using data from the GTEx consortium. BSP identified several thousand SNP-gene bimodules. While many of the individual SNP-gene pairs appearing in the discovered bimodules were identified by standard eQTL methods, the discovered bimodules revealed genomic subnetworks that appeared to be biologically meaningful and worthy of further scientific investigation.

Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司