A common approach to localize a mobile robot is by measuring distances to points of known positions, called anchors. Locating a device from distance measurements is typically phrased as a non-convex optimization problem, stemming from the nonlinearity of the measurement model. Non-convex optimization problems may yield suboptimal solutions when local iterative solvers such as Gauss-Newton are employed. In this paper, we design an optimality certificate for continuous-time range-only localization. Our formulation allows for the integration of a motion prior, which ensures smoothness of the solution and is crucial for localizing from only a few distance measurements. The proposed certificate comes at little additional cost since it has the same complexity as the sparse local solver itself: linear in the number of positions. We show, both in simulation and on real-world datasets, that the efficient local solver often finds the globally optimal solution (confirmed by our certificate) and when it does not, simple random reinitialization eventually leads to the certifiable optimum.
We present a novel sequential Monte Carlo approach to online smoothing of additive functionals in a very general class of path-space models. Hitherto, the solutions proposed in the literature suffer from either long-term numerical instability due to particle-path degeneracy or, in the case that degeneracy is remedied by particle approximation of the so-called backward kernel, high computational demands. In order to balance optimally computational speed against numerical stability, we propose to furnish a (fast) naive particle smoother, propagating recursively a sample of particles and associated smoothing statistics, with an adaptive backward-sampling-based updating rule which allows the number of (costly) backward samples to be kept at a minimum. This yields a new, function-specific additive smoothing algorithm, AdaSmooth, which is computationally fast, numerically stable and easy to implement. The algorithm is provided with rigorous theoretical results guaranteeing its consistency, asymptotic normality and long-term stability as well as numerical results demonstrating empirically the clear superiority of AdaSmooth to existing algorithms.
The study of robustness has received much attention due to its inevitability in data-driven settings where many systems face uncertainty. One such example of concern is Bayesian Optimization (BO), where uncertainty is multi-faceted, yet there only exists a limited number of works dedicated to this direction. In particular, there is the work of Kirschner et al. (2020), which bridges the existing literature of Distributionally Robust Optimization (DRO) by casting the BO problem from the lens of DRO. While this work is pioneering, it admittedly suffers from various practical shortcomings such as finite contexts assumptions, leaving behind the main question Can one devise a computationally tractable algorithm for solving this DRO-BO problem? In this work, we tackle this question to a large degree of generality by considering robustness against data-shift in $\phi$-divergences, which subsumes many popular choices, such as the $\chi^2$-divergence, Total Variation, and the extant Kullback-Leibler (KL) divergence. We show that the DRO-BO problem in this setting is equivalent to a finite-dimensional optimization problem which, even in the continuous context setting, can be easily implemented with provable sublinear regret bounds. We then show experimentally that our method surpasses existing methods, attesting to the theoretical results.
This work provides a theoretical analysis for optimally solving the pose estimation problem using total least squares for vector observations from landmark features, which is central to applications involving simultaneous localization and mapping. First, the optimization process is formulated with observation vectors extracted from point-cloud features. Then, error-covariance expressions are derived. The attitude and position estimates obtained via the derived optimization process are proven to reach the bounds defined by the Cram\'er-Rao lower bound under the small-angle approximation of attitude errors. A fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. This includes more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is verified using Monte Carlo simulations and an experiment with an actual LIDAR to validate the error-covariance analysis.
In performative prediction, a predictive model impacts the distribution that generates future data, a phenomenon that is being ignored in classical supervised learning. In this closed-loop setting, the natural measure of performance named performative risk ($\mathrm{PR}$), captures the expected loss incurred by a predictive model \emph{after} deployment. The core difficulty of using the performative risk as an optimization objective is that the data distribution itself depends on the model parameters. This dependence is governed by the environment and not under the control of the learner. As a consequence, even the choice of a convex loss function can result in a highly non-convex $\mathrm{PR}$ minimization problem. Prior work has identified a pair of general conditions on the loss and the mapping from model parameters to distributions that implies the convexity of the performative risk. In this paper, we relax these assumptions and focus on obtaining weaker notions of convexity, without sacrificing the amenability of the $\mathrm{PR}$ minimization problem for iterative optimization methods.
This paper explores continuous-time control synthesis for target-driven navigation to satisfy complex high-level tasks expressed as linear temporal logic (LTL). We propose a model-free framework using deep reinforcement learning (DRL) where the underlying dynamic system is unknown (an opaque box). Unlike prior work, this paper considers scenarios where the given LTL specification might be infeasible and therefore cannot be accomplished globally. Instead of modifying the given LTL formula, we provide a general DRL-based approach to satisfy it with minimal violation. To do this, we transform a previously multi-objective DRL problem, which requires simultaneous automata satisfaction and minimum violation cost, into a single objective. By guiding the DRL agent with a sampling-based path planning algorithm for the potentially infeasible LTL task, the proposed approach mitigates the myopic tendencies of DRL, which are often an issue when learning general LTL tasks that can have long or infinite horizons. This is achieved by decomposing an infeasible LTL formula into several reach-avoid sub-tasks with shorter horizons, which can be trained in a modular DRL architecture. Furthermore, we overcome the challenge of the exploration process for DRL in complex and cluttered environments by using path planners to design rewards that are dense in the configuration space. The benefits of the presented approach are demonstrated through testing on various complex nonlinear systems and compared with state-of-the-art baselines. The Video demonstration can be found on YouTube Channel://youtu.be/jBhx6Nv224E.
We thoroughly study a novel but basic combinatorial matrix completion problem: Given a binary incomplete matrix, fill in the missing entries so that every pair of rows in the resulting matrix has a Hamming distance within a specified range. We obtain an almost complete picture of the complexity landscape regarding the distance constraints and the maximum number of missing entries in any row. We develop polynomial-time algorithms for maximum diameter three based on Deza's theorem [Discret. Math. 1973] from extremal set theory. We also prove NP-hardness for diameter at least four. For the number of missing entries per row, we show polynomial-time solvability when there is only one and NP-hardness when there can be at least two. In many of our algorithms, we heavily rely on Deza's theorem to identify sunflower structures. This paves the way towards polynomial-time algorithms which are based on finding graph factors and solving 2-SAT instances.
While reinforcement learning produces very promising results for many applications, its main disadvantage is the lack of safety guarantees, which prevents its use in safety-critical systems. In this work, we address this issue by a safety shield for nonlinear continuous systems that solve reach-avoid tasks. Our safety shield prevents applying potentially unsafe actions from a reinforcement learning agent by projecting the proposed action to the closest safe action. This approach is called action projection and is implemented via mixed-integer optimization. The safety constraints for action projection are obtained by applying parameterized reachability analysis using polynomial zonotopes, which enables to accurately capture the nonlinear effects of the actions on the system. In contrast to other state of the art approaches for action projection, our safety shield can efficiently handle input constraints and dynamic obstacles, eases incorporation of the spatial robot dimensions into the safety constraints, guarantees robust safety despite process noise and measurement errors, and is well suited for high-dimensional systems, as we demonstrate on several challenging benchmark systems.
In this paper we integrate the isotonic regression with Stone's cross-validation-based method to estimate discrete infinitely supported distribution. We prove that the estimator is strongly consistent, derive its rate of convergence for any underlying distribution, and for one-dimensional case we derive Marshal-type inequality for cumulative distribution function of the estimator. Also, we construct the asymptotically correct conservative global confidence band for the estimator. It is shown that, first, the estimator performs good even for small sized data sets, second, the estimator outperforms in the case of non-monotone underlying distribution, and, third, it performs almost as good as Grenander estimator when the true distribution is isotonic. Therefore, the new estimator provides a trade-off between goodness-of-fit, monotonicity and quality of probabilistic forecast. We apply the estimator to the time-to-onset data of visceral leishmaniasis in Brazil collected from 2007 to 2014.
Projected Inverse Dynamics Control (PIDC) is commonly used in robots subject to contact, especially in quadrupedal systems. Many methods based on such dynamics have been developed for quadrupedal locomotion tasks, and only a few works studied simple interactions between the robot and environment, such as pressing an E-stop button. To facilitate the interaction requiring exact force control for safety, we propose a novel interaction force control scheme for underactuated quadrupedal systems relying on projection techniques and Quadratic Programming (QP). This algorithm allows the robot to apply a desired interaction force to the environment without using force sensors while satisfying physical constraints and inducing minimal base motion. Unlike previous projection-based methods, the QP design uses two selection matrices in its hierarchical structure, facilitating the decoupling between force and motion control. The proposed algorithm is verified with a quadrupedal robot in a high-fidelity simulator. Compared to the QP designs without the strategy of using two selection matrices and the PIDC method for contact force control, our method provided more accurate contact force tracking performance with minimal base movement, paving the way to approach the exact interaction force control for underactuated quadrupedal systems.
A popular method for variance reduction in observational causal inference is propensity-based trimming, the practice of removing units with extreme propensities from the sample. This practice has theoretical grounding when the data are homoscedastic and the propensity model is parametric (Yang and Ding, 2018; Crump et al. 2009), but in modern settings where heteroscedastic data are analyzed with non-parametric models, existing theory fails to support current practice. In this work, we address this challenge by developing new methods and theory for sample trimming. Our contributions are three-fold: first, we describe novel procedures for selecting which units to trim. Our procedures differ from previous work in that we trim not only units with small propensities, but also units with extreme conditional variances. Second, we give new theoretical guarantees for inference after trimming. In particular, we show how to perform inference on the trimmed subpopulation without requiring that our regressions converge at parametric rates. Instead, we make only fourth-root rate assumptions like those in the double machine learning literature. This result applies to conventional propensity-based trimming as well and thus may be of independent interest. Finally, we propose a bootstrap-based method for constructing simultaneously valid confidence intervals for multiple trimmed sub-populations, which are valuable for navigating the trade-off between sample size and variance reduction inherent in trimming. We validate our methods in simulation, on the 2007-2008 National Health and Nutrition Examination Survey, and on a semi-synthetic Medicare dataset and find promising results in all settings.