For fine-grained generation and recognition tasks such as minimally-supervised text-to-speech (TTS), voice conversion (VC), and automatic speech recognition (ASR), the intermediate representation extracted from speech should contain information that is between text coding and acoustic coding. The linguistic content is salient, while the paralinguistic information such as speaker identity and acoustic details should be removed. However, existing methods for extracting fine-grained intermediate representations from speech suffer from issues of excessive redundancy and dimension explosion. Additionally, existing contrastive learning methods in the audio field focus on extracting global descriptive information for downstream audio classification tasks, making them unsuitable for TTS, VC, and ASR tasks. To address these issues, we propose a method named Contrastive Phoneme-Speech Pretraining (CPSP), which uses three encoders, one decoder, and contrastive learning to bring phoneme and speech into a joint multimodal space, learning how to connect phoneme and speech at the frame level. The CPSP model is trained on 210k speech and phoneme text pairs, achieving minimally-supervised TTS, VC, and ASR. The proposed CPSP method offers a promising solution for fine-grained generation and recognition downstream tasks in speech processing. We provide a website with audio samples.
Large Language Models (LLMs) have excelled as high-level semantic planners for sequential decision-making tasks. However, harnessing them to learn complex low-level manipulation tasks, such as dexterous pen spinning, remains an open problem. We bridge this fundamental gap and present Eureka, a human-level reward design algorithm powered by LLMs. Eureka exploits the remarkable zero-shot generation, code-writing, and in-context improvement capabilities of state-of-the-art LLMs, such as GPT-4, to perform evolutionary optimization over reward code. The resulting rewards can then be used to acquire complex skills via reinforcement learning. Without any task-specific prompting or pre-defined reward templates, Eureka generates reward functions that outperform expert human-engineered rewards. In a diverse suite of 29 open-source RL environments that include 10 distinct robot morphologies, Eureka outperforms human experts on 83% of the tasks, leading to an average normalized improvement of 52%. The generality of Eureka also enables a new gradient-free in-context learning approach to reinforcement learning from human feedback (RLHF), readily incorporating human inputs to improve the quality and the safety of the generated rewards without model updating. Finally, using Eureka rewards in a curriculum learning setting, we demonstrate for the first time, a simulated Shadow Hand capable of performing pen spinning tricks, adeptly manipulating a pen in circles at rapid speed.
This letter proposes a novel anti-interference technique, semantic interference cancellation (SemantIC), for enhancing information quality towards the sixth-generation (6G) wireless networks. SemantIC only requires the receiver to concatenate the channel decoder with a semantic auto-encoder. This constructs a turbo loop which iteratively and alternately eliminates noise in the signal domain and the semantic domain. From the viewpoint of network information theory, the neural network of the semantic auto-encoder stores side information by training, and provides side information in iterative decoding, as an implementation of the Wyner-Ziv theorem. Simulation results verify the performance improvement by SemantIC without extra channel resource cost.
The generative Artificial Intelligence (AI) tools based on Large Language Models (LLMs) use billions of parameters to extensively analyse large datasets and extract critical private information such as, context, specific details, identifying information etc. This have raised serious threats to user privacy and reluctance to use such tools. This article proposes the conceptual model called PrivChatGPT, a privacy-preserving model for LLMs that consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data. To demonstrate its applicability, we show how a private mechanism could be integrated into the existing model for training LLMs to protect user privacy; specifically, we employed differential privacy and private training using Reinforcement Learning (RL). We measure the privacy loss and evaluate the measure of uncertainty or randomness once differential privacy is applied. It further recursively evaluates the level of privacy guarantees and the measure of uncertainty of public database and resources, during each update when new information is added for training purposes. To critically evaluate the use of differential privacy for private LLMs, we hypothetically compared other mechanisms e..g, Blockchain, private information retrieval, randomisation, for various performance measures such as the model performance and accuracy, computational complexity, privacy vs. utility etc. We conclude that differential privacy, randomisation, and obfuscation can impact utility and performance of trained models, conversely, the use of ToR, Blockchain, and PIR may introduce additional computational complexity and high training latency. We believe that the proposed model could be used as a benchmark for proposing privacy preserving LLMs for generative AI tools.
With the advance of large language models (LLMs), the research field of LLM applications becomes more and more popular and the idea of constructing pipelines to accomplish complex tasks by stacking LLM API calls come true. However, this kind of methods face two limitations: narrow information coverage and low fault tolerance. In this work, we propose a novel method called ALLIES. Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query, enabling an iterative reasoning process. By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly obtainable through retrieval. We take zero-shot open-domain question answering (ODQA) as an application scene and evaluate ALLIES on the widely-used benchmarks, such as NQ, WebQ and TriviaQA. The experimental results demonstrate that ALLIES significantly outperforms other zero-shot baselines, indicating its effectiveness in tackling those challenges. Our code is available in //github.com/microsoft/SimXNS/tree/main/ALLIES.
Large language models (LLMs) with hundreds of billions or trillions of parameters, represented by chatGPT, have achieved profound impact on various fields. However, training LLMs with super-large-scale parameters requires large high-performance GPU clusters and long training periods lasting for months. Due to the inevitable hardware and software failures in large-scale clusters, maintaining uninterrupted and long-duration training is extremely challenging. As a result, A substantial amount of training time is devoted to task checkpoint saving and loading, task rescheduling and restart, and task manual anomaly checks, which greatly harms the overall training efficiency. To address these issues, we propose TRANSOM, a novel fault-tolerant LLM training system. In this work, we design three key subsystems: the training pipeline automatic fault tolerance and recovery mechanism named Transom Operator and Launcher (TOL), the training task multi-dimensional metric automatic anomaly detection system named Transom Eagle Eye (TEE), and the training checkpoint asynchronous access automatic fault tolerance and recovery technology named Transom Checkpoint Engine (TCE). Here, TOL manages the lifecycle of training tasks, while TEE is responsible for task monitoring and anomaly reporting. TEE detects training anomalies and reports them to TOL, who automatically enters the fault tolerance strategy to eliminate abnormal nodes and restart the training task. And the asynchronous checkpoint saving and loading functionality provided by TCE greatly shorten the fault tolerance overhead. The experimental results indicate that TRANSOM significantly enhances the efficiency of large-scale LLM training on clusters. Specifically, the pre-training time for GPT3-175B has been reduced by 28%, while checkpoint saving and loading performance have improved by a factor of 20.
Diffusion model based language-guided image editing has achieved great success recently. However, existing state-of-the-art diffusion models struggle with rendering correct text and text style during generation. To tackle this problem, we propose a universal self-supervised text editing diffusion model (DiffUTE), which aims to replace or modify words in the source image with another one while maintaining its realistic appearance. Specifically, we build our model on a diffusion model and carefully modify the network structure to enable the model for drawing multilingual characters with the help of glyph and position information. Moreover, we design a self-supervised learning framework to leverage large amounts of web data to improve the representation ability of the model. Experimental results show that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity. Our code will be avaliable in \url{//github.com/chenhaoxing/DiffUTE}.
Generating controllable and photorealistic digital human avatars is a long-standing and important problem in Vision and Graphics. Recent methods have shown great progress in terms of either photorealism or inference speed while the combination of the two desired properties still remains unsolved. To this end, we propose a novel method, called DELIFFAS, which parameterizes the appearance of the human as a surface light field that is attached to a controllable and deforming human mesh model. At the core, we represent the light field around the human with a deformable two-surface parameterization, which enables fast and accurate inference of the human appearance. This allows perceptual supervision on the full image compared to previous approaches that could only supervise individual pixels or small patches due to their slow runtime. Our carefully designed human representation and supervision strategy leads to state-of-the-art synthesis results and inference time. The video results and code are available at //vcai.mpi-inf.mpg.de/projects/DELIFFAS.
Simultaneous speech translation (SST) aims to provide real-time translation of spoken language, even before the speaker finishes their sentence. Traditionally, SST has been addressed primarily by cascaded systems that decompose the task into subtasks, including speech recognition, segmentation, and machine translation. However, the advent of deep learning has sparked significant interest in end-to-end (E2E) systems. Nevertheless, a major limitation of most approaches to E2E SST reported in the current literature is that they assume that the source speech is pre-segmented into sentences, which is a significant obstacle for practical, real-world applications. This thesis proposal addresses end-to-end simultaneous speech translation, particularly in the long-form setting, i.e., without pre-segmentation. We present a survey of the latest advancements in E2E SST, assess the primary obstacles in SST and its relevance to long-form scenarios, and suggest approaches to tackle these challenges.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.