亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gaussian processes (GPs) are a popular class of Bayesian nonparametric models, but its training can be computationally burdensome for massive training datasets. While there has been notable work on scaling up these models for big data, existing methods typically rely on a stationary GP assumption for approximation, and can thus perform poorly when the underlying response surface is non-stationary, i.e., it has some regions of rapid change and other regions with little change. Such non-stationarity is, however, ubiquitous in real-world problems, including our motivating application for surrogate modeling of computer experiments. We thus propose a new Product of Sparse GP (ProSpar-GP) method for scalable GP modeling with massive non-stationary data. The ProSpar-GP makes use of a carefully-constructed product-of-experts formulation of sparse GP experts, where different experts are placed within local regions of non-stationarity. These GP experts are fit via a novel variational inference approach, which capitalizes on mini-batching and GPU acceleration for efficient optimization of inducing points and length-scale parameters for each expert. We further show that the ProSpar-GP is Kolmogorov-consistent, in that its generative distribution defines a valid stochastic process over the prediction space; such a property provides essential stability for variational inference, particularly in the presence of non-stationarity. We then demonstrate the improved performance of the ProSpar-GP over the state-of-the-art, in a suite of numerical experiments and an application for surrogate modeling of a satellite drag simulator.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 泛函 · 規范化的 · 可辨認的 · CASES ·
2024 年 1 月 5 日

This paper proposes several approaches as baselines to compute a shared active subspace for multivariate vector-valued functions. The goal is to minimize the deviation between the function evaluations on the original space and those on the reconstructed one. This is done either by manipulating the gradients or the symmetric positive (semi-)definite (SPD) matrices computed from the gradients of each component function so as to get a single structure common to all component functions. These approaches can be applied to any data irrespective of the underlying distribution unlike the existing vector-valued approach that is constrained to a normal distribution. We test the effectiveness of these methods on five optimization problems. The experiments show that, in general, the SPD-level methods are superior to the gradient-level ones, and are close to the vector-valued approach in the case of a normal distribution. Interestingly, in most cases it suffices to take the sum of the SPD matrices to identify the best shared active subspace.

Linear codes are widely studied in coding theory as they have nice applications in distributed storage, combinatorics, lattices, cryptography and so on. Constructing linear codes with desirable properties is an interesting research topic. In this paper, based on the augmentation technique, we present two families of linear codes from some functions over finite fields. The first family of linear codes is constructed from monomial functions over finite fields. The locality of them is determined and the weight distributions of two subfamilies of the codes are also given. An infinite family of locally recoverable codes which are at least almost optimal and some optimal recoverable codes are obtained from the linear codes. In particular, the two subfamilies of the codes are proved to be both optimally or almost optimally extendable and self-orthogonal. The second family of linear codes is constructed from weakly regular bent functions over finite fields and their weight distribution is determined. This family of codes is proved to have locality 3 for some cases and is conjectured to have locality 2 for other cases. Particularly, two families of optimal locally recoverable codes are derived from the linear codes. Besides, this family of codes is also proved to be both optimally or almost optimally extendable and self-orthogonal.

We introduce two iterative methods, GPBiLQ and GPQMR, for solving unsymmetric partitioned linear systems. The basic mechanism underlying GPBiLQ and GPQMR is a novel simultaneous tridiagonalization via biorthogonality that allows for short-recurrence iterative schemes. Similar to the biconjugate gradient method, it is possible to develop another method, GPBiCG, whose iterate (if it exists) can be obtained inexpensively from the GPBiLQ iterate. Whereas the iterate of GPBiCG may not exist, the iterates of GPBiLQ and GPQMR are always well defined as long as the biorthogonal tridiagonal reduction process does not break down. We discuss connections between the proposed methods and some existing methods, and give numerical experiments to illustrate the performance of the proposed methods.

The present work is devoted to strong approximations of a generalized Ait-Sahalia model arising from mathematical finance. The numerical study of the considered model faces essential difficulties caused by a drift that blows up at the origin, highly nonlinear drift and diffusion coefficients and positivity-preserving requirement. In this paper, a novel explicit Euler-type scheme is proposed, which is easily implementable and able to preserve positivity of the original model unconditionally, i.e., for any time step-size h>0. A mean-square convergence rate of order 0.5 is also obtained for the proposed scheme in both non-critical and general critical cases. Our work is motivated by the need to justify the multi-level Monte Carlo (MLMC) simulations for the underlying model, where the rate of mean-square convergence is required and the preservation of positivity is desirable particularly for large discretization time steps. To the best of our knowledge, this is the first paper to propose an unconditionally positivity preserving explicit scheme with order 1/2 of mean-square convergence for the model. Numerical experiments are finally provided to confirm the theoretical findings.

Gradient-enhanced Kriging (GE-Kriging) is a well-established surrogate modelling technique for approximating expensive computational models. However, it tends to get impractical for high-dimensional problems due to the size of the inherent correlation matrix and the associated high-dimensional hyper-parameter tuning problem. To address these issues, a new method, called sliced GE-Kriging (SGE-Kriging), is developed in this paper for reducing both the size of the correlation matrix and the number of hyper-parameters. We first split the training sample set into multiple slices, and invoke Bayes' theorem to approximate the full likelihood function via a sliced likelihood function, in which multiple small correlation matrices are utilized to describe the correlation of the sample set rather than one large one. Then, we replace the original high-dimensional hyper-parameter tuning problem with a low-dimensional counterpart by learning the relationship between the hyper-parameters and the derivative-based global sensitivity indices. The performance of SGE-Kriging is finally validated by means of numerical experiments with several benchmarks and a high-dimensional aerodynamic modeling problem. The results show that the SGE-Kriging model features an accuracy and robustness that is comparable to the standard one but comes at much less training costs. The benefits are most evident for high-dimensional problems with tens of variables.

The multigrid V-cycle method is a popular method for solving systems of linear equations. It computes an approximate solution by using smoothing on fine levels and solving a system of linear equations on the coarsest level. Solving on the coarsest level depends on the size and difficulty of the problem. If the size permits, it is typical to use a direct method based on LU or Cholesky decomposition. In settings with large coarsest-level problems, approximate solvers such as iterative Krylov subspace methods, or direct methods based on low-rank approximation, are often used. The accuracy of the coarsest-level solver is typically determined based on the experience of the users with the concrete problems and methods. In this paper we present an approach to analyzing the effects of approximate coarsest-level solves on the convergence of the V-cycle method for symmetric positive definite problems. Using these results, we derive coarsest-level stopping criterion through which we may control the difference between the approximation computed by a V-cycle method with approximate coarsest-level solver and the approximation which would be computed if the coarsest-level problems were solved exactly. The coarsest-level stopping criterion may thus be set up such that the V-cycle method converges to a chosen finest-level accuracy in (nearly) the same number of V-cycle iterations as the V-cycle method with exact coarsest-level solver. We also utilize the theoretical results to discuss how the convergence of the V-cycle method may be affected by the choice of a tolerance in a coarsest-level stopping criterion based on the relative residual norm.

Histopathological image classification is an important task in medical image analysis. Recent approaches generally rely on weakly supervised learning due to the ease of acquiring case-level labels from pathology reports. However, patch-level classification is preferable in applications where only a limited number of cases are available or when local prediction accuracy is critical. On the other hand, acquiring extensive datasets with localized labels for training is not feasible. In this paper, we propose a semi-supervised patch-level histopathological image classification model, named CLASS-M, that does not require extensively labeled datasets. CLASS-M is formed by two main parts: a contrastive learning module that uses separated Hematoxylin and Eosin images generated through an adaptive stain separation process, and a module with pseudo-labels using MixUp. We compare our model with other state-of-the-art models on two clear cell renal cell carcinoma datasets. We demonstrate that our CLASS-M model has the best performance on both datasets. Our code is available at github.com/BzhangURU/Paper_CLASS-M/tree/main

Artificial intelligence (AI), machine learning, and deep learning (DL) methods are becoming increasingly important in the field of biomedical image analysis. However, to exploit the full potential of such methods, a representative number of experimentally acquired images containing a significant number of manually annotated objects is needed as training data. Here we introduce SYNTA (synthetic data) as a novel approach for the generation of synthetic, photo-realistic, and highly complex biomedical images as training data for DL systems. We show the versatility of our approach in the context of muscle fiber and connective tissue analysis in histological sections. We demonstrate that it is possible to perform robust and expert-level segmentation tasks on previously unseen real-world data, without the need for manual annotations using synthetic training data alone. Being a fully parametric technique, our approach poses an interpretable and controllable alternative to Generative Adversarial Networks (GANs) and has the potential to significantly accelerate quantitative image analysis in a variety of biomedical applications in microscopy and beyond.

One class of statistical hypothesis testing procedures is the indisputable equivalence tests, whose main objective is to establish practical equivalence rather than the usual statistical significant difference. These hypothesis tests are prone in bioequivalence studies, where one would wish to show that, for example, an existing drug and a new one under development have the same therapeutic effect. In this article, we consider a two-stage randomized (RAND2) p-value utilizing the uniformly most powerful (UMP) p-value in the first stage when multiple two-one-sided hypotheses are of interest. We investigate the behavior of the distribution functions of the two p-values when there are changes in the boundaries of the null or alternative hypothesis or when the chosen parameters are too close to these boundaries. We also consider the behavior of the power functions to an increase in sample size. Specifically, we investigate the level of conservativity to the sample sizes to see if we control the type I error rate when using either of the two p-values for any sample size. In multiple tests, we evaluate the performance of the two p-values in estimating the proportion of true null hypotheses. We conduct a family-wise error rate control using an adaptive Bonferroni procedure with a plug-in estimator to account for the multiplicity that arises from the multiple hypotheses under consideration. We verify the various claims in this research using simulation study and real-world data analysis.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司