亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the field of cybersecurity, the ability to compute similarity scores at the function level is import. Considering that a single binary file may contain an extensive amount of functions, an effective learning framework must exhibit both high accuracy and efficiency when handling substantial volumes of data. Nonetheless, conventional methods encounter several limitations. Firstly, accurately annotating different pairs of functions with appropriate labels poses a significant challenge, thereby making it difficult to employ supervised learning methods without risk of overtraining on erroneous labels. Secondly, while SOTA models often rely on pre-trained encoders or fine-grained graph comparison techniques, these approaches suffer from drawbacks related to time and memory consumption. Thirdly, the momentum update algorithm utilized in graph-based contrastive learning models can result in information leakage. Surprisingly, none of the existing articles address this issue. This research focuses on addressing the challenges associated with large-scale BCSD. To overcome the aforementioned problems, we propose GraphMoco: a graph momentum contrast model that leverages multimodal structural information for efficient binary function representation learning on a large scale. Our approach employs a CNN-based model and departs from the usage of memory-intensive pre-trained models. We adopt an unsupervised learning strategy that effectively use the intrinsic structural information present in the binary code. Our approach eliminates the need for manual labeling of similar or dissimilar information.Importantly, GraphMoco demonstrates exceptional performance in terms of both efficiency and accuracy when operating on extensive datasets. Our experimental results indicate that our method surpasses the current SOTA approaches in terms of accuracy.

相關內容

In the realm of Large Language Models, the balance between instruction data quality and quantity has become a focal point. Recognizing this, we introduce a self-guided methodology for LLMs to autonomously discern and select cherry samples from vast open-source datasets, effectively minimizing manual curation and potential cost for instruction tuning an LLM. Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal tool to identify discrepancies between a model's expected responses and its autonomous generation prowess. Through the adept application of IFD, cherry samples are pinpointed, leading to a marked uptick in model training efficiency. Empirical validations on renowned datasets like Alpaca and WizardLM underpin our findings; with a mere 10% of conventional data input, our strategy showcases improved results. This synthesis of self-guided cherry-picking and the IFD metric signifies a transformative leap in the optimization of LLMs, promising both efficiency and resource-conscious advancements.

Computing gradients of an expectation with respect to the distributional parameters of a discrete distribution is a problem arising in many fields of science and engineering. Typically, this problem is tackled using Reinforce, which frames the problem of gradient estimation as a Monte Carlo simulation. Unfortunately, the Reinforce estimator is especially sensitive to discrepancies between the true probability distribution and the drawn samples, a common issue in low sampling regimes that results in inaccurate gradient estimates. In this paper, we introduce DBsurf, a reinforce-based estimator for discrete distributions that uses a novel sampling procedure to reduce the discrepancy between the samples and the actual distribution. To assess the performance of our estimator, we subject it to a diverse set of tasks. Among existing estimators, DBsurf attains the lowest variance in a least squares problem commonly used in the literature for benchmarking. Furthermore, DBsurf achieves the best results for training variational auto-encoders (VAE) across different datasets and sampling setups. Finally, we apply DBsurf to build a simple and efficient Neural Architecture Search (NAS) algorithm with state-of-the-art performance.

Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance. Therefore, maintaining a constant monitoring process for machine learning model performance is crucial in order to proactively prevent any potential performance regression. However, supervised drift detection methods require human annotation and consequently lead to a longer time to detect and mitigate the drift. In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution. In the second step, we employ a kernel-based statistical test that utilizes the maximum mean discrepancy (MMD) distance metric to compare the reference and target distributions and estimate any potential drift. Our method also identifies the subset of production data that is the root cause of the drift. The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.

The logistic regression model is one of the most powerful statistical methods for the analysis of binary data. The logistic regression allows to use a set of covariates to explain the binary responses. The mixture of logistic regression models is used to fit heterogeneous populations through an unsupervised learning approach. The multicollinearity problem is one of the most common problems in logistics and a mixture of logistic regressions where the covariates are highly correlated. This problem results in unreliable maximum likelihood estimates for the regression coefficients. This research developed shrinkage methods to deal with the multicollinearity in a mixture of logistic regression models. These shrinkage methods include ridge and Liu-type estimators. Through extensive numerical studies, we show that the developed methods provide more reliable results in estimating the coefficients of the mixture. Finally, we applied the shrinkage methods to analyze the bone disorder status of women aged 50 and older.

Today, malware is one of the primary cyberthreats to organizations. Malware has pervaded almost every type of computing device including the ones having limited memory, battery and computation power such as mobile phones, tablets and embedded devices like Internet-of-Things (IoT) devices. Consequently, the privacy and security of the malware infected systems and devices have been heavily jeopardized. In recent years, researchers have leveraged machine learning based strategies for malware detection and classification. Malware analysis approaches can only be employed in resource constrained environments if the methods are lightweight in nature. In this paper, we present MALITE, a lightweight malware analysis system, that can classify various malware families and distinguish between benign and malicious binaries. MALITE converts a binary into a gray scale or an RGB image and employs low memory and battery power consuming as well as computationally inexpensive malware analysis strategies. We have designed MALITE-MN, a lightweight neural network based architecture and MALITE-HRF, an ultra lightweight random forest based method that uses histogram features extracted by a sliding window. We evaluate the performance of both on six publicly available datasets (Malimg, Microsoft BIG, Dumpware10, MOTIF, Drebin and CICAndMal2017), and compare them to four state-of-the-art malware classification techniques. The results show that MALITE-MN and MALITE-HRF not only accurately identify and classify malware but also respectively consume several orders of magnitude lower resources (in terms of both memory as well as computation capabilities), making them much more suitable for resource constrained environments.

Efficient methods for the representation and simulation of quantum states and quantum operations are crucial for the optimization of quantum circuits. Decision diagrams (DDs), a well-studied data structure originally used to represent Boolean functions, have proven capable of capturing relevant aspects of quantum systems, but their limits are not well understood. In this work, we investigate and bridge the gap between existing DD-based structures and the stabilizer formalism, an important tool for simulating quantum circuits in the tractable regime. We first show that although DDs were suggested to succinctly represent important quantum states, they actually require exponential space for certain stabilizer states. To remedy this, we introduce a more powerful decision diagram variant, called Local Invertible Map-DD (LIMDD). We prove that the set of quantum states represented by poly-sized LIMDDs strictly contains the union of stabilizer states and other decision diagram variants. Finally, there exist circuits which LIMDDs can efficiently simulate, while their output states cannot be succinctly represented by two state-of-the-art simulation paradigms: the stabilizer decomposition techniques for Clifford + $T$ circuits and Matrix-Product States. By uniting two successful approaches, LIMDDs thus pave the way for fundamentally more powerful solutions for simulation and analysis of quantum computing.

The Variational Autoencoder (VAE) is known to suffer from the phenomenon of \textit{posterior collapse}, where the latent representations generated by the model become independent of the inputs. This leads to degenerated representations of the input, which is attributed to the limitations of the VAE's objective function. In this work, we propose a novel solution to this issue, the Contrastive Regularization for Variational Autoencoders (CR-VAE). The core of our approach is to augment the original VAE with a contrastive objective that maximizes the mutual information between the representations of similar visual inputs. This strategy ensures that the information flow between the input and its latent representation is maximized, effectively avoiding posterior collapse. We evaluate our method on a series of visual datasets and demonstrate, that CR-VAE outperforms state-of-the-art approaches in preventing posterior collapse.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.

北京阿比特科技有限公司