In recent years, interest in autonomous shipping in urban waterways has increased significantly due to the trend of keeping cars and trucks out of city centers. Classical approaches such as Frenet frame based planning and potential field navigation often require tuning of many configuration parameters and sometimes even require a different configuration depending on the situation. In this paper, we propose a novel path planning approach based on reinforcement learning called Model Predictive Reinforcement Learning (MPRL). MPRL calculates a series of waypoints for the vessel to follow. The environment is represented as an occupancy grid map, allowing us to deal with any shape of waterway and any number and shape of obstacles. We demonstrate our approach on two scenarios and compare the resulting path with path planning using a Frenet frame and path planning based on a proximal policy optimization (PPO) agent. Our results show that MPRL outperforms both baselines in both test scenarios. The PPO based approach was not able to reach the goal in either scenario while the Frenet frame approach failed in the scenario consisting of a corner with obstacles. MPRL was able to safely (collision free) navigate to the goal in both of the test scenarios.
In recent years, researchers combine both audio and video signals to deal with challenges where actions are not well represented or captured by visual cues. However, how to effectively leverage the two modalities is still under development. In this work, we develop a multiscale multimodal Transformer (MMT) that leverages hierarchical representation learning. Particularly, MMT is composed of a novel multiscale audio Transformer (MAT) and a multiscale video Transformer [43]. To learn a discriminative cross-modality fusion, we further design multimodal supervised contrastive objectives called audio-video contrastive loss (AVC) and intra-modal contrastive loss (IMC) that robustly align the two modalities. MMT surpasses previous state-of-the-art approaches by 7.3% and 2.1% on Kinetics-Sounds and VGGSound in terms of the top-1 accuracy without external training data. Moreover, the proposed MAT significantly outperforms AST [28] by 22.2%, 4.4% and 4.7% on three public benchmark datasets, and is about 3% more efficient based on the number of FLOPs and 9.8% more efficient based on GPU memory usage.
Facing economic challenges due to the diverse objectives of businesses, and consumers, commercial greenhouses strive to minimize energy costs while addressing CO2 emissions. This scenario is intensified by rising energy costs and the global imperative to curtail CO2 emissions. To address these dynamic economic challenges, this paper proposes an architectural design for an energy economic dispatch testbed for commercial greenhouses. Utilizing the Attribute-Driven De-sign method, core architectural components of a software-in-the-loop testbed are proposed which emphasizes modularity and careful consideration of the multi-objective optimization problem. This approach extends prior research by implementing a modular multi-objective optimization framework in Java. The results demonstrate the successful integration of the CO2 reduction objective within the modular architecture with minimal effort. The multi-objective optimization output can also be employed to examine cost and CO2 objectives, ultimately serving as a valuable decision-support tool. The novel testbed architecture and a modular approach can tackle the multi-objective optimization problem and enable commercial greenhouses to navigate the intricate landscape of energy cost and CO2 emissions management.
Optimal transport is a fundamental topic that has attracted a great amount of attention from the optimization community in the past decades. In this paper, we consider an interesting discrete dynamic optimal transport problem: can we efficiently update the optimal transport plan when the weights or the locations of the data points change? This problem is naturally motivated by several applications in machine learning. For example, we often need to compute the optimal transport cost between two different data sets; if some changes happen to a few data points, should we re-compute the high complexity cost function or update the cost by some efficient dynamic data structure? We are aware that several dynamic maximum flow algorithms have been proposed before, however, the research on dynamic minimum cost flow problem is still quite limited, to the best of our knowledge. We propose a novel 2D Skip Orthogonal List together with some dynamic tree techniques. Although our algorithm is based on the conventional simplex method, it can efficiently find the variable to pivot within expected $O(1)$ time, and complete each pivoting operation within expected $O(|V|)$ time where $V$ is the set of all supply and demand nodes. Since dynamic modifications typically do not introduce significant changes, our algorithm requires only a few simplex iterations in practice. So our algorithm is more efficient than re-computing the optimal transport cost that needs at least one traversal over all $|E| = O(|V|^2)$ variables, where $|E|$ denotes the number of edges in the network. Our experiments demonstrate that our algorithm significantly outperforms existing algorithms in the dynamic scenarios.
With the rapid advancement of technology, the recognition of underwater acoustic signals in complex environments has become increasingly crucial. Currently, mainstream underwater acoustic signal recognition relies primarily on time-frequency analysis to extract spectral features, finding widespread applications in the field. However, existing recognition methods heavily depend on expert systems, facing limitations such as restricted knowledge bases and challenges in handling complex relationships. These limitations stem from the complexity and maintenance difficulties associated with rules or inference engines. Recognizing the potential advantages of deep learning in handling intricate relationships, this paper proposes a method utilizing neural networks for underwater acoustic signal recognition. The proposed approach involves continual learning of features extracted from spectra for the classification of underwater acoustic signals. Deep learning models can automatically learn abstract features from data and continually adjust weights during training to enhance classification performance.
Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Recently powered by large language models (LLMs), chat systems, such as chatGPT and PaLM, emerge and rapidly become a promising direction to achieve artificial general intelligence (AGI) in natural language processing (NLP). There comes a natural thinking that we could employ these abilities to reformulate autonomous driving. By combining LLM with foundation models, it is possible to utilize the human knowledge, commonsense and reasoning to rebuild autonomous driving systems from the current long-tailed AI dilemma. In this paper, we investigate the techniques of foundation models and LLMs applied for autonomous driving, categorized as simulation, world model, data annotation and planning or E2E solutions etc.
The globalization of the Integrated Circuit (IC) supply chain, driven by time-to-market and cost considerations, has made ICs vulnerable to hardware Trojans (HTs). Against this threat, a promising approach is to use Machine Learning (ML)-based side-channel analysis, which has the advantage of being a non-intrusive method, along with efficiently detecting HTs under golden chip-free settings. In this paper, we question the trustworthiness of ML-based HT detection via side-channel analysis. We introduce a HT obfuscation (HTO) approach to allow HTs to bypass this detection method. Rather than theoretically misleading the model by simulated adversarial traces, a key aspect of our approach is the design and implementation of adversarial noise as part of the circuitry, alongside the HT. We detail HTO methodologies for ASICs and FPGAs, and evaluate our approach using TrustHub benchmark. Interestingly, we found that HTO can be implemented with only a single transistor for ASIC designs to generate adversarial power traces that can fool the defense with 100% efficiency. We also efficiently implemented our approach on a Spartan 6 Xilinx FPGA using 2 different variants: (i) DSP slices-based, and (ii) ring-oscillator-based design. Additionally, we assess the efficiency of countermeasures like spectral domain analysis, and we show that an adaptive attacker can still design evasive HTOs by constraining the design with a spectral noise budget. In addition, while adversarial training (AT) offers higher protection against evasive HTs, AT models suffer from a considerable utility loss, potentially rendering them unsuitable for such security application. We believe this research represents a significant step in understanding and exploiting ML vulnerabilities in a hardware security context, and we make all resources and designs openly available online: //dev.d18uu4lqwhbmka.amplifyapp.com
This article studies the problem of applying normal forces on a surface, using an underactuated aerial vehicle equipped with a dexterous robotic arm. A force-motion high-level controller is designed based on a Lyapunov function encompassing alignment and exerted force errors. This controller is coupled with a Control Barrier Function constraint under an optimization scheme using Quadratic Programming. This aims to enforce a prescribed relationship between the approaching motion for the end-effector and its alignment with the surface, thus ensuring safe operation. An adaptive low-level controller is devised for the aerial vehicle, capable of tracking velocity commands generated by the high-level controller. Simulations and experiments are presented to demonstrate the force exertion stability and safety of the controller in cases of large disturbances.
Answering real-world tourism questions that seek Point-of-Interest (POI) recommendations is challenging, as it requires both spatial and non-spatial reasoning, over a large candidate pool. The traditional method of encoding each pair of question and POI becomes inefficient when the number of candidates increases, making it infeasible for real-world applications. To overcome this, we propose treating the QA task as a dense vector retrieval problem, where we encode questions and POIs separately and retrieve the most relevant POIs for a question by utilizing embedding space similarity. We use pretrained language models (PLMs) to encode textual information, and train a location encoder to capture spatial information of POIs. Experiments on a real-world tourism QA dataset demonstrate that our approach is effective, efficient, and outperforms previous methods across all metrics. Enabled by the dense retrieval architecture, we further build a global evaluation baseline, expanding the search space by 20 times compared to previous work. We also explore several factors that impact on the model's performance through follow-up experiments. Our code and model are publicly available at //github.com/haonan-li/LAMB.
Decentralized optimization methods often entail information exchange between neighbors. Transmission failures can happen due to network congestion, hardware/software issues, communication outage, and other factors. In this paper, we investigate the random link failure problem in decentralized multi-task online convex optimization, where agents have individual decisions that are coupled with each other via pairwise constraints. Although widely used in constrained optimization, conventional saddle-point algorithms are not directly applicable here because of random packet dropping. To address this issue, we develop a robust decentralized saddle-point algorithm against random link failures with heterogeneous probabilities by replacing the missing decisions of neighbors with their latest received values. Then, by judiciously bounding the accumulated deviation stemming from this replacement, we first establish that our algorithm achieves $\mathcal{O}(\sqrt{T})$ regret and $\mathcal{O}(T^\frac{3}{4})$ constraint violations for the full information scenario, where the complete information on the local cost function is revealed to each agent at the end of each time slot. These two bounds match, in order sense, the performance bounds of algorithms with perfect communications. Further, we extend our algorithm and analysis to the two-point bandit feedback scenario, where only the values of the local cost function at two random points are disclosed to each agent sequentially. Performance bounds of the same orders as the full information case are derived. Finally, we corroborate the efficacy of the proposed algorithms and the analytical results through numerical simulations.
Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.