Human organs constantly undergo anatomical changes due to a complex mix of short-term (e.g., heartbeat) and long-term (e.g., aging) factors. Evidently, prior knowledge of these factors will be beneficial when modeling their future state, i.e., via image generation. However, most of the medical image generation tasks only rely on the input from a single image, thus ignoring the sequential dependency even when longitudinal data is available. Sequence-aware deep generative models, where model input is a sequence of ordered and timestamped images, are still underexplored in the medical imaging domain that is featured by several unique challenges: 1) Sequences with various lengths; 2) Missing data or frame, and 3) High dimensionality. To this end, we propose a sequence-aware diffusion model (SADM) for the generation of longitudinal medical images. Recently, diffusion models have shown promising results in high-fidelity image generation. Our method extends this new technique by introducing a sequence-aware transformer as the conditional module in a diffusion model. The novel design enables learning longitudinal dependency even with missing data during training and allows autoregressive generation of a sequence of images during inference. Our extensive experiments on 3D longitudinal medical images demonstrate the effectiveness of SADM compared with baselines and alternative methods. The code is available at //github.com/ubc-tea/SADM-Longitudinal-Medical-Image-Generation.
Recently, CLIP-guided image synthesis has shown appealing performance on adapting a pre-trained source-domain generator to an unseen target domain. It does not require any target-domain samples but only the textual domain labels. The training is highly efficient, e.g., a few minutes. However, existing methods still have some limitations in the quality of generated images and may suffer from the mode collapse issue. A key reason is that a fixed adaptation direction is applied for all cross-domain image pairs, which leads to identical supervision signals. To address this issue, we propose an Image-specific Prompt Learning (IPL) method, which learns specific prompt vectors for each source-domain image. This produces a more precise adaptation direction for every cross-domain image pair, endowing the target-domain generator with greatly enhanced flexibility. Qualitative and quantitative evaluations on various domains demonstrate that IPL effectively improves the quality and diversity of synthesized images and alleviates the mode collapse. Moreover, IPL is independent of the structure of the generative model, such as generative adversarial networks or diffusion models. Code is available at //github.com/Picsart-AI-Research/IPL-Zero-Shot-Generative-Model-Adaptation.
Recent advances in digitization have led to the availability of multivariate time series data in various domains, enabling real-time monitoring of operations. Identifying abnormal data patterns and detecting potential failures in these scenarios are important yet rather challenging. In this work, we propose a novel unsupervised anomaly detection method for time series data. The proposed framework jointly learns the observation model and the dynamic model, and model uncertainty is estimated from normal samples. Specifically, a long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the latent space. Bidirectional transitions of states are simultaneously modeled by leveraging backward and forward temporal information. Regularization of the latent space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level. Empirical studies on synthetic and real-world datasets demonstrate the superior performance of the proposed method in anomaly detection tasks.
Most statistical learning algorithms rely on an over-simplified assumption, that is, the train and test data are independent and identically distributed. In real-world scenarios, however, it is common for models to encounter data from new and different domains to which they were not exposed to during training. This is often the case in medical imaging applications due to differences in acquisition devices, imaging protocols, and patient characteristics. To address this problem, domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains by learning domain-invariant features robust to variations across different domains. To this end, we introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles and increase data diversity while preserving essential content information. We conduct extensive evaluation experiments on various multi-domain segmentation datasets, including 2D retinal fundus optic disc/cup and 3D prostate MRI. Our results demonstrate that AdverIN significantly improves the generalization ability of the segmentation models, achieving significant improvement on these challenging datasets. Code is available upon publication.
This paper proposes a method for generating images of customized objects specified by users. The method is based on a general framework that bypasses the lengthy optimization required by previous approaches, which often employ a per-object optimization paradigm. Our framework adopts an encoder to capture high-level identifiable semantics of objects, producing an object-specific embedding with only a single feed-forward pass. The acquired object embedding is then passed to a text-to-image synthesis model for subsequent generation. To effectively blend a object-aware embedding space into a well developed text-to-image model under the same generation context, we investigate different network designs and training strategies, and propose a simple yet effective regularized joint training scheme with an object identity preservation loss. Additionally, we propose a caption generation scheme that become a critical piece in fostering object specific embedding faithfully reflected into the generation process, while keeping control and editing abilities. Once trained, the network is able to produce diverse content and styles, conditioned on both texts and objects. We demonstrate through experiments that our proposed method is able to synthesize images with compelling output quality, appearance diversity, and object fidelity, without the need of test-time optimization. Systematic studies are also conducted to analyze our models, providing insights for future work.
Longitudinal studies, where a series of images from the same set of individuals are acquired at different time-points, represent a popular technique for studying and characterizing temporal dynamics in biomedical applications. The classical approach for longitudinal comparison involves normalizing for nuisance variations, such as image orientation or contrast differences, via pre-processing. Statistical analysis is, in turn, conducted to detect changes of interest, either at the individual or population level. This classical approach can suffer from pre-processing issues and limitations of the statistical modeling. For example, normalizing for nuisance variation might be hard in settings where there are a lot of idiosyncratic changes. In this paper, we present a simple machine learning-based approach that can alleviate these issues. In our approach, we train a deep learning model (called PaIRNet, for Pairwise Image Ranking Network) to compare pairs of longitudinal images, with or without supervision. In the self-supervised setup, for instance, the model is trained to temporally order the images, which requires learning to recognize time-irreversible changes. Our results from four datasets demonstrate that PaIRNet can be very effective in localizing and quantifying meaningful longitudinal changes while discounting nuisance variation. Our code is available at \url{//github.com/heejong-kim/learning-to-compare-longitudinal-images.git}
Multi-turn compositional image generation (M-CIG) is a challenging task that aims to iteratively manipulate a reference image given a modification text. While most of the existing methods for M-CIG are based on generative adversarial networks (GANs), recent advances in image generation have demonstrated the superiority of diffusion models over GANs. In this paper, we propose a diffusion-based method for M-CIG named conditional denoising diffusion with image compositional matching (CDD-ICM). We leverage CLIP as the backbone of image and text encoders, and incorporate a gated fusion mechanism, originally proposed for question answering, to compositionally fuse the reference image and the modification text at each turn of M-CIG. We introduce a conditioning scheme to generate the target image based on the fusion results. To prioritize the semantic quality of the generated target image, we learn an auxiliary image compositional match (ICM) objective, along with the conditional denoising diffusion (CDD) objective in a multi-task learning framework. Additionally, we also perform ICM guidance and classifier-free guidance to improve performance. Experimental results show that CDD-ICM achieves state-of-the-art results on two benchmark datasets for M-CIG, i.e., CoDraw and i-CLEVR.
Transformers have demonstrated remarkable performance in natural language processing and computer vision. However, existing vision Transformers struggle to learn from limited medical data and are unable to generalize on diverse medical image tasks. To tackle these challenges, we present MedFormer, a data-scalable Transformer designed for generalizable 3D medical image segmentation. Our approach incorporates three key elements: a desirable inductive bias, hierarchical modeling with linear-complexity attention, and multi-scale feature fusion that integrates spatial and semantic information globally. MedFormer can learn across tiny- to large-scale data without pre-training. Comprehensive experiments demonstrate MedFormer's potential as a versatile segmentation backbone, outperforming CNNs and vision Transformers on seven public datasets covering multiple modalities (e.g., CT and MRI) and various medical targets (e.g., healthy organs, diseased tissues, and tumors). We provide public access to our models and evaluation pipeline, offering solid baselines and unbiased comparisons to advance a wide range of downstream clinical applications.
We present DreamAvatar, a text-and-shape guided framework for generating high-quality 3D human avatars with controllable poses. While encouraging results have been produced by recent methods on text-guided 3D common object generation, generating high-quality human avatars remains an open challenge due to the complexity of the human body's shape, pose, and appearance. We propose DreamAvatar to tackle this challenge, which utilizes a trainable NeRF for predicting density and color features for 3D points and a pre-trained text-to-image diffusion model for providing 2D self-supervision. Specifically, we leverage SMPL models to provide rough pose and shape guidance for the generation. We introduce a dual space design that comprises a canonical space and an observation space, which are related by a learnable deformation field through the NeRF, allowing for the transfer of well-optimized texture and geometry from the canonical space to the target posed avatar. Additionally, we exploit a normal-consistency regularization to allow for more vivid generation with detailed geometry and texture. Through extensive evaluations, we demonstrate that DreamAvatar significantly outperforms existing methods, establishing a new state-of-the-art for text-and-shape guided 3D human generation.
Diffusion models have demonstrated remarkable progress in image generation quality, especially when guidance is used to control the generative process. However, guidance requires a large amount of image-annotation pairs for training and is thus dependent on their availability, correctness and unbiasedness. In this paper, we eliminate the need for such annotation by instead leveraging the flexibility of self-supervision signals to design a framework for self-guided diffusion models. By leveraging a feature extraction function and a self-annotation function, our method provides guidance signals at various image granularities: from the level of holistic images to object boxes and even segmentation masks. Our experiments on single-label and multi-label image datasets demonstrate that self-labeled guidance always outperforms diffusion models without guidance and may even surpass guidance based on ground-truth labels, especially on unbalanced data. When equipped with self-supervised box or mask proposals, our method further generates visually diverse yet semantically consistent images, without the need for any class, box, or segment label annotation. Self-guided diffusion is simple, flexible and expected to profit from deployment at scale.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.