亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As an emerging technology and a relatively affordable device, the 4D imaging radar has already been confirmed effective in performing 3D object detection in autonomous driving. Nevertheless, the sparsity and noisiness of 4D radar point clouds hinder further performance improvement, and in-depth studies about its fusion with other modalities are lacking. On the other hand, most of the camera-based perception methods transform the extracted image perspective view features into the bird's-eye view geometrically via "depth-based splatting" proposed in Lift-Splat-Shoot (LSS), and some researchers exploit other modals such as LiDARs or ordinary automotive radars for enhancement. Recently, a few works have applied the "sampling" strategy for image view transformation, showing that it outperforms "splatting" even without image depth prediction. However, the potential of "sampling" is not fully unleashed. In this paper, we investigate the "sampling" view transformation strategy on the camera and 4D imaging radar fusion-based 3D object detection. In the proposed model, LXL, predicted image depth distribution maps and radar 3D occupancy grids are utilized to aid image view transformation, called "radar occupancy-assisted depth-based sampling". Experiments on VoD and TJ4DRadSet datasets show that the proposed method outperforms existing 3D object detection methods by a significant margin without bells and whistles. Ablation studies demonstrate that our method performs the best among different enhancement settings.

相關內容

Enabling robots to understand language instructions and react accordingly to visual perception has been a long-standing goal in the robotics research community. Achieving this goal requires cutting-edge advances in natural language processing, computer vision, and robotics engineering. Thus, this paper mainly investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system to enhance the effectiveness of the human-robot interaction. We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration. The system utilizes the LLM of ChatGPT to summarize the preference object of the users as a target instruction via the multi-round interactive dialogue. The target instruction is then forwarded to a visual grounding system for object pose and size estimation, following which the robot grasps the object accordingly. We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task. The further experimental results on various real-world scenarios demonstrated the feasibility and efficacy of our proposed framework. See the project website at: //star-uu-wang.github.io/WALL-E/

This paper studies a near-field multiple-input multiple-output (MIMO) radar sensing system, in which the transceivers with massive antennas aim to localize multiple near-field targets in the three-dimensional (3D) space over unknown cluttered environments. We consider a spherical wavefront propagation with both channel phase and amplitude variations over different antennas. Under this setup, the unknown parameters include the 3D coordinates and complex reflection coefficients of the targets, as well as the noise and interference covariance matrix. First, by considering general transmit signal waveforms, we derive the Fisher information matrix (FIM) corresponding to the 3D coordinates and the complex reflection coefficients of the targets and accordingly obtain the Cram\'er-Rao bound (CRB) for the 3D coordinates. This provides a performance bound for 3D near-field target localization. For the special single-target case, we obtain the CRB in an analytical form, and analyze its asymptotic scaling behaviors with respect to the target distance and antenna size of the transceiver. Next, to facilitate practical localization, we propose two estimators to localize targets based on the maximum likelihood (ML) criterion, namely the 3D approximate cyclic optimization (3D-ACO) and the 3D cyclic optimization with white Gaussian noise (3D-CO-WGN), respectively. Numerical results validate the asymptotic CRB analysis and show that the consideration of varying channel amplitudes is vital to achieve accurate CRB and localization when the targets are close to the transceivers. It is also shown that the proposed estimators achieve localization performance close to the derived CRB under various cluttered environments, thus validating their effectiveness in practical implementation. Furthermore, it is shown that transmit waveforms have a significant impact on CRB and the localization performance.

Vision Transformers (ViTs) have emerged as the fundamental architecture for most computer vision fields, but the considerable memory and computation costs hinders their application on resource-limited devices. As one of the most powerful compression methods, binarization reduces the computation of the neural network by quantizing the weights and activation values as $\pm$1. Although existing binarization methods have demonstrated excellent performance on Convolutional Neural Networks (CNNs), the full binarization of ViTs is still under-studied and suffering a significant performance drop. In this paper, we first argue empirically that the severe performance degradation is mainly caused by the weight oscillation in the binarization training and the information distortion in the activation of ViTs. Based on these analyses, we propose $\textbf{BinaryViT}$, an accurate full binarization scheme for ViTs, which pushes the quantization of ViTs to the limit. Specifically, we propose a novel gradient regularization scheme (GRS) for driving a bimodal distribution of the weights to reduce oscillation in binarization training. Moreover, we design an activation shift module (ASM) to adaptively tune the activation distribution to reduce the information distortion caused by binarization. Extensive experiments on ImageNet dataset show that our BinaryViT consistently surpasses the strong baseline by 2.05% and improve the accuracy of fully binarized ViTs to a usable level. Furthermore, our method achieves impressive savings of 16.2$\times$ and 17.7$\times$ in model size and OPs compared to the full-precision DeiT-S.

New 3+1D high-resolution radar sensors are gaining importance for 3D object detection in the automotive domain due to their relative affordability and improved detection compared to classic low-resolution radar sensors. One limitation of high-resolution radar sensors, compared to lidar sensors, is the sparsity of the generated point cloud. This sparsity could be partially overcome by accumulating radar point clouds of subsequent time steps. This contribution analyzes limitations of accumulating radar point clouds on the View-of-Delft dataset. By employing different ego-motion estimation approaches, the dataset's inherent constraints, and possible solutions are analyzed. Additionally, a learning-based instance motion estimation approach is deployed to investigate the influence of dynamic motion on the accumulated point cloud for object detection. Experiments document an improved object detection performance by applying an ego-motion estimation and dynamic motion correction approach.

As the size of models and datasets grows, it has become increasingly common to train models in parallel. However, existing distributed stochastic gradient descent (SGD) algorithms suffer from insufficient utilization of computational resources and poor convergence in heterogeneous clusters. In this paper, we propose a delayed synchronous SGD algorithm with adaptive batch size (ABS-SGD) for heterogeneous GPU clusters. In ABS-SGD, workers perform global synchronization to accumulate delayed gradients and use the accumulated delayed gradients to update parameters. While workers are performing global synchronization for delayed gradients, they perform the computation of the next batch without specifying batch size in advance, which lasts until the next global synchronization starts, realizing the full utilization of computational resources. Since the gradient delay is only one iteration, the stale gradient problem can be alleviated. We theoretically prove the convergence of ABS-SGD in heterogeneous clusters. Extensive experiments in three types of heterogeneous clusters demonstrate that ABS-SGD can make full use of computational resources and accelerate model convergence: When training ResNet18 network with 4 workers, ABS-SGD increases the convergence speed by 1.30x on average compared with the best baseline algorithm.

Diffusion models have been leveraged to perform adversarial purification and thus provide both empirical and certified robustness for a standard model. On the other hand, different robustly trained smoothed models have been studied to improve the certified robustness. Thus, it raises a natural question: Can diffusion model be used to achieve improved certified robustness on those robustly trained smoothed models? In this work, we first theoretically show that recovered instances by diffusion models are in the bounded neighborhood of the original instance with high probability; and the "one-shot" denoising diffusion probabilistic models (DDPM) can approximate the mean of the generated distribution of a continuous-time diffusion model, which approximates the original instance under mild conditions. Inspired by our analysis, we propose a certifiably robust pipeline DiffSmooth, which first performs adversarial purification via diffusion models and then maps the purified instances to a common region via a simple yet effective local smoothing strategy. We conduct extensive experiments on different datasets and show that DiffSmooth achieves SOTA-certified robustness compared with eight baselines. For instance, DiffSmooth improves the SOTA-certified accuracy from $36.0\%$ to $53.0\%$ under $\ell_2$ radius $1.5$ on ImageNet. The code is available at [//github.com/javyduck/DiffSmooth].

Whole slide image (WSI) analysis has become increasingly important in the medical imaging community, enabling automated and objective diagnosis, prognosis, and therapeutic-response prediction. However, in clinical practice, the ever-evolving environment hamper the utility of WSI analysis models. In this paper, we propose the FIRST continual learning framework for WSI analysis, named ConSlide, to tackle the challenges of enormous image size, utilization of hierarchical structure, and catastrophic forgetting by progressive model updating on multiple sequential datasets. Our framework contains three key components. The Hierarchical Interaction Transformer (HIT) is proposed to model and utilize the hierarchical structural knowledge of WSI. The Breakup-Reorganize (BuRo) rehearsal method is developed for WSI data replay with efficient region storing buffer and WSI reorganizing operation. The asynchronous updating mechanism is devised to encourage the network to learn generic and specific knowledge respectively during the replay stage, based on a nested cross-scale similarity learning (CSSL) module. We evaluated the proposed ConSlide on four public WSI datasets from TCGA projects. It performs best over other state-of-the-art methods with a fair WSI-based continual learning setting and achieves a better trade-off of the overall performance and forgetting on previous task

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.

北京阿比特科技有限公司