We provide new analytical results on the uplink data detection in massive multiple-input multiple-output systems with 1-bit analog-to-digital converters. The statistical properties of the soft-estimated symbols (i.e., after linear combining and prior to the data detection process) have been previously characterized only for a single user equipment (UE) and uncorrelated Rayleigh fading. In this paper, we consider a multi-UE setting with correlated Rayleigh fading, where the soft-estimated symbols are obtained by means of maximum ratio combining based on imperfectly estimated channels. We derive a closed-form expression of the expected value of the soft-estimated symbols, which allows to understand the impact of the specific data symbols transmitted by the interfering UEs. Building on this result, we design efficient data detection strategies based on the minimum distance criterion, which are compared in terms of symbol error rate and complexity.
Providing ultra-reliable and low-latency transmission is a current issue in wireless communications (URLLC). While it is commonly known that channel coding with large codewords improves reliability, this usually necessitates using interleavers, which incur undesired latency. Using short codewords is a necessary adjustment that will eliminate the requirement for interleaving and reduce decoding latency. This paper suggests a coding and decoding system that, combined with the high spectral efficiency of spatial multiplexing, can provide URLLC over a fading wireless channel. Random linear codes (RLCs) are used over a block-fading massive multiple input-multiple-output (mMIMO) channel followed by zero-forcing (ZF) detection and guessing random additive noise decoding (GRAND). A variation of GRAND, called symbol-level GRAND, originally proposed for single-antenna systems, is generalized to spatial multiplexing. Symbol-level GRAND is much more computationally effective than bit-level GRAND as it takes advantage of the structure of the constellation of the modulation. The paper analyses the performance of symbol-level GRAND depending on the orthogonality defect (OD) of the underlying lattice. Symbol-level GRAND takes advantage of the a priori probability of each error pattern given a received symbol, and specifies the order in which error patterns are tested. The paper further proposes to make use of further side-information that comes from the mMIMO channel-state information (CSI) and its impacts on the reliability of each antenna. This induces an antenna sorting order that further reduces the decoding complexity by over 80 percent when comparing with bit-level GRAND.
This paper studies an integrated sensing and communication (ISAC) system for single-target detection in a cloud radio access network architecture. The system considers downlink communication and multi-static sensing approach, where ISAC transmit access points (APs) jointly serve the user equipments (UEs) and optionally steer a beam toward the target. A centralized operation of cell-free massive MIMO (multiple-input multiple-output) is considered for communication and sensing purposes. A maximum a posteriori ratio test detector is developed to detect the target in the presence of clutter, so-called target-free signals. Moreover, a power allocation algorithm is proposed to maximize the sensing signal-to-interference-plus-noise ratio (SINR) while ensuring a minimum communication SINR value for each UE and meeting per-AP power constraints. Two ISAC setups are studied: i) using only existing communication beams for sensing and ii) using additional sensing beams. The proposed algorithm's efficiency is investigated in both realistic and idealistic scenarios, corresponding to the presence and absence of the target-free channels, respectively. Although detection probability degrades in the presence of target-free channels that act as interference, the proposed algorithm significantly outperforms the interference-unaware benchmark by exploiting the statistics of the clutter. It has also been shown that the proposed algorithm outperforms the fully communication-centric algorithm, both in the presence and absence of clutter. Moreover, using an additional sensing beam improves the detection performance for a target with lower radar cross-section variances compared to the case without sensing beams.
Most existing studies on joint activity detection and channel estimation for grant-free massive random access (RA) systems assume perfect synchronization among all active users, which is hard to achieve in practice. Therefore, this paper considers asynchronous grant-free massive RA systems and develops novel algorithms for joint user activity detection, synchronization delay detection, and channel estimation. In particular, the framework of orthogonal approximate message passing (OAMP) is first utilized to deal with the non-independent and identically distributed (i.i.d.) pilot matrix in asynchronous grant-free massive RA systems, and an OAMP-based algorithm capable of leveraging the common sparsity among the received pilot signals from multiple base station antennas is developed. To reduce the computational complexity, a memory AMP (MAMP)based algorithm is further proposed that eliminates the matrix inversions in the OAMP-based algorithm. Simulation results demonstrate the effectiveness of the two proposed algorithms over the baseline methods. Besides, the MAMP-based algorithm reduces 37% of the computations while maintaining comparable detection/estimation accuracy, compared with the OAMP-based algorithm.
Integrated recommendation, which aims at jointly recommending heterogeneous items from different channels in a main feed, has been widely applied to various online platforms. Though attractive, integrated recommendation requires the ranking methods to migrate from conventional user-item models to the new user-channel-item paradigm in order to better capture users' preferences on both item and channel levels. Moreover, practical feed recommendation systems usually impose exposure constraints on different channels to ensure user experience. This leads to greater difficulty in the joint ranking of heterogeneous items. In this paper, we investigate the integrated recommendation task with exposure constraints in practical recommender systems. Our contribution is forth-fold. First, we formulate this task as a binary online linear programming problem and propose a two-layer framework named Multi-channel Integrated Recommendation with Exposure Constraints (MIREC) to obtain the optimal solution. Second, we propose an efficient online allocation algorithm to determine the optimal exposure assignment of different channels from a global view of all user requests over the entire time horizon. We prove that this algorithm reaches the optimal point under a regret bound of $ \mathcal{O}(\sqrt{T}) $ with linear complexity. Third, we propose a series of collaborative models to determine the optimal layout of heterogeneous items at each user request. The joint modeling of user interests, cross-channel correlation, and page context in our models aligns more with the browsing nature of feed products than existing models. Finally, we conduct extensive experiments on both offline datasets and online A/B tests to verify the effectiveness of MIREC. The proposed framework has now been implemented on the homepage of Taobao to serve the main traffic.
Due to the power consumption and high circuit cost in antenna arrays, the practical application of massive multiple-input multiple-output (MIMO) in the sixth generation (6G) and future wireless networks is still challenging. Employing low-resolution analog-to-digital converters (ADCs) and hybrid analog and digital (HAD) structure is two low-cost choice with acceptable performance loss.In this paper, the combination of the mixed-ADC architecture and HAD structure employed at receiver is proposed for direction of arrival (DOA) estimation, which will be applied to the beamforming tracking and alignment in 6G. By adopting the additive quantization noise model, the exact closed-form expression of the Cram\'{e}r-Rao lower bound (CRLB) for the HAD architecture with mixed-ADCs is derived. Moreover, the closed-form expression of the performance loss factor is derived as a benchmark. In addition, to take power consumption into account, energy efficiency is also investigated in our paper. The numerical results reveal that the HAD structure with mixed-ADCs can significantly reduce the power consumption and hardware cost. Furthermore, that architecture is able to achieve a better trade-off between the performance loss and the power consumption. Finally, adopting 2-4 bits of resolution may be a good choice in practical massive MIMO systems.
Post-market safety surveillance is an integral part of mass vaccination programs. Typically relying on sequential analysis of real-world health data as they accrue, safety surveillance is challenged by the difficulty of sequential multiple testing and by biases induced by residual confounding. The current standard approach based on the maximized sequential probability ratio test (MaxSPRT) fails to satisfactorily address these practical challenges and it remains a rigid framework that requires pre-specification of the surveillance schedule. We develop an alternative Bayesian surveillance procedure that addresses both challenges using a more flexible framework. We adopt a joint statistical modeling approach to sequentially estimate the effect of vaccine exposure on the adverse event of interest and correct for estimation bias by simultaneously analyzing a large set of negative control outcomes through a Bayesian hierarchical model. We then compute a posterior probability of the alternative hypothesis via Markov chain Monte Carlo sampling and use it for sequential detection of safety signals. Through an empirical evaluation using six US observational healthcare databases covering more than 360 million patients, we benchmark the proposed procedure against MaxSPRT on testing errors and estimation accuracy, under two epidemiological designs, the historical comparator and the self-controlled case series. We demonstrate that our procedure substantially reduces Type 1 error rates, maintains high statistical power, delivers fast signal detection, and provides considerably more accurate estimation. As an effort to promote open science, we present all empirical results in an R ShinyApp and provide full implementation of our method in the R package EvidenceSynthesis.
Cooperative adaptive cruise control presents an opportunity to improve road transportation through increase in road capacity and reduction in energy use and accidents. Clever design of control algorithms and communication systems is required to ensure that the vehicle platoon is stable and meets desired safety requirements. In this paper, we propose a centralized model predictive controller for a heterogeneous platoon of vehicles to reach a desired platoon velocity and individual inter-vehicle distances with driver-selected headway time. As a novel concept, we allow for interruption from a human driver in the platoon that temporarily takes control of their vehicle with the assumption that the driver will, at minimum, obey legal velocity limits and the physical performance constraints of their vehicle. The finite horizon cost function of our proposed platoon controller is inspired from the infinite horizon design. To the best of our knowledge, this is the first platoon controller that integrates human-driven vehicles. We illustrate the performance of our proposed design with a numerical study, demonstrating that the safety distance, velocity, and actuation constraints are obeyed. Additionally, in simulation we illustrate a key property of string stability where the impact of a disturbance is reduced through the platoon.
We investigate trade-offs in static and dynamic evaluation of hierarchical queries with arbitrary free variables. In the static setting, the trade-off is between the time to partially compute the query result and the delay needed to enumerate its tuples. In the dynamic setting, we additionally consider the time needed to update the query result under single-tuple inserts or deletes to the database. Our approach observes the degree of values in the database and uses different computation and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the latter it partially computes the result, while for the former it computes enough information to allow for on-the-fly enumeration. We define the preprocessing time, the update time, and the enumeration delay as functions of the light/heavy threshold. By appropriately choosing this threshold, our approach recovers a number of prior results when restricted to hierarchical queries. We show that for a restricted class of hierarchical queries, our approach achieves worst-case optimal update time and enumeration delay conditioned on the Online Matrix-Vector Multiplication Conjecture.
The importance of unspanned macroeconomic variables for Dynamic Term Structure Models has been intensively discussed in the literature. To our best knowledge the earlier studies considered only linear interactions between the economy and the real-world dynamics of interest rates in DTSMs. We propose a generalized modelling setup for Gaussian DTSMs which allows for unspanned nonlinear associations between the two and we exploit it in forecasting. Specifically, we construct a custom sequential Monte Carlo estimation and forecasting scheme where we introduce Gaussian Process priors to model nonlinearities. Sequential scheme we propose can also be used with dynamic portfolio optimization to assess the potential of generated economic value to investors. The methodology is presented using US Treasury data and selected macroeconomic indices. Namely, we look at core inflation and real economic activity. We contrast the results obtained from the nonlinear model with those stemming from an application of a linear model. Unlike for real economic activity, in case of core inflation we find that, compared to linear models, application of nonlinear models leads to statistically significant gains in economic value across considered maturities.
Owing to the promising ability of saving hardware cost and spectrum resources, integrated sensing and communication (ISAC) is regarded as a revolutionary technology for future sixth-generation (6G) networks. The mono-static ISAC systems considered in most of existing works can only obtain limited sensing performance due to the single observation angle and easily blocked transmission links, which motivates researchers to investigate cooperative ISAC networks. In order to further improve the degrees of freedom (DoFs) of cooperative ISAC networks, the transmitter-receiver selection, i.e., BS mode selection problem, is meaningful to be studied. However, to our best knowledge, this crucial problem has not been extensively studied in existing works. In this paper, we consider the joint BS mode selection, transmit beamforming, and receive filter design for cooperative cell-free ISAC networks, where multi-base stations (BSs) cooperatively serve communication users and detect targets. We aim to maximize the sum of sensing signal-to-interference-plus-noise ratio (SINR) under the communication SINR requirements, total power budget, and constraints on the numbers of transmitters and receivers. An efficient joint beamforming design algorithm and three different heuristic BS mode selection methods are proposed to solve this non-convex NP-hard problem. Simulation results demonstrates the advantages of cooperative ISAC networks, the importance of BS mode selection, and the effectiveness of our proposed joint design algorithms.