For a constraint satisfaction problem (CSP), a robust satisfaction algorithm is one that outputs an assignment satisfying most of the constraints on instances that are near-satisfiable. It is known that the CSPs that admit efficient robust satisfaction algorithms are precisely those of bounded width, i.e., CSPs whose satisfiability can be checked by a simple local consistency algorithm (eg., 2-SAT or Horn-SAT in the Boolean case). While the exact satisfiability of a bounded width CSP can be checked by combinatorial algorithms, the robust algorithm is based on rounding a canonical Semidefinite programming(SDP) relaxation. In this work, we initiate the study of robust satisfaction algorithms for promise CSPs, which are a vast generalization of CSPs that have received much attention recently. The motivation is to extend the theory beyond CSPs, as well as to better understand the power of SDPs. We present robust SDP rounding algorithms under some general conditions, namely the existence of particular high-dimensional Boolean symmetries known as majority or alternating threshold polymorphisms. On the hardness front, we prove that the lack of such polymorphisms makes the PCSP hard for all pairs of symmetric Boolean predicates. Our method involves a novel method to argue SDP gaps via the absence of certain colorings of the sphere, with connections to sphere Ramsey theory. We conjecture that PCSPs with robust satisfaction algorithms are precisely those for which the feasibility of the canonical SDP implies (exact) satisfiability. We also give a precise algebraic condition, known as a minion characterization, of which PCSPs have the latter property.
Hopfield networks are an attractive choice for solving many types of computational problems because they provide a biologically plausible mechanism. The Self-Optimization (SO) model adds to the Hopfield network by using a biologically founded Hebbian learning rule, in combination with repeated network resets to arbitrary initial states, for optimizing its own behavior towards some desirable goal state encoded in the network. In order to better understand that process, we demonstrate first that the SO model can solve concrete combinatorial problems in SAT form, using two examples of the Liars problem and the map coloring problem. In addition, we show how under some conditions critical information might get lost forever with the learned network producing seemingly optimal solutions that are in fact inappropriate for the problem it was tasked to solve. What appears to be an undesirable side-effect of the SO model, can provide insight into its process for solving intractable problems.
One of the fundamental results in quantum foundations is the Kochen-Specker (KS) theorem, which states that any theory whose predictions agree with quantum mechanics must be contextual, i.e., a quantum observation cannot be understood as revealing a pre-existing value. The theorem hinges on the existence of a mathematical object called a KS vector system. While many KS vector systems are known, the problem of finding the minimum KS vector system in three dimensions has remained stubbornly open for over 55 years. In this paper, we present a new method based on a combination of a Boolean satisfiability (SAT) solver and a computer algebra system (CAS) to address this problem. Our approach shows that a KS system in three dimensions must contain at least 24 vectors. Our SAT+CAS method is over 35,000 times faster at deriving the previously known lower bound of 22 vectors than the prior CAS-based searches. More importantly, we generate certificates that allow verifying our results without trusting either the SAT solver or the CAS. The increase in efficiency is due to the fact we are able to exploit the powerful combinatorial search-with-learning capabilities of SAT solvers, together with the CAS-based isomorph-free exhaustive method of orderly generation of graphs. To the best of our knowledge, our work is the first application of a SAT+CAS method to a problem in the realm of quantum foundations and the first lower bound in the minimum Kochen-Specker problem with a computer-verifiable proof certificate.
We prove a stability result for general $3$-wise correlations over distributions satisfying mild connectivity properties. More concretely, we show that if $\Sigma,\Gamma$ and $\Phi$ are alphabets of constant size, and $\mu$ is a pairwise connected distribution over $\Sigma\times\Gamma\times\Phi$ with no $(\mathbb{Z},+)$ embeddings in which the probability of each atom is $\Omega(1)$, then the following holds. Any triplets of $1$-bounded functions $f\colon \Sigma^n\to\mathbb{C}$, $g\colon \Gamma^n\to\mathbb{C}$, $h\colon \Phi^n\to\mathbb{C}$ satisfying \[ \left|\mathbb{E}_{(x,y,z)\sim \mu^{\otimes n}}\big[f(x)g(y)h(z)\big]\right|\geq \varepsilon \] must arise from an Abelian group associated with the distribution $\mu$. More specifically, we show that there is an Abelian group $(H,+)$ of constant size such that for any such $f,g$ and $h$, the function $f$ (and similarly $g$ and $h$) is correlated with a function of the form $\tilde{f}(x) = \chi(\sigma(x_1),\ldots,\sigma(x_n)) L (x)$, where $\sigma\colon \Sigma \to H$ is some map, $\chi\in \hat{H}^{\otimes n}$ is a character, and $L\colon \Sigma^n\to\mathbb{C}$ is a low-degree function with bounded $2$-norm. En route we prove a few additional results that may be of independent interest, such as an improved direct product theorem, as well as a result we refer to as a ``restriction inverse theorem'' about the structure of functions that, under random restrictions, with noticeable probability have significant correlation with a product function. In companion papers, we show applications of our results to the fields of Probabilistically Checkable Proofs, as well as various areas in discrete mathematics such as extremal combinatorics and additive combinatorics.
Motivated by a practical scenario in blockchains in which a client, who possesses a transaction, wishes to privately verify that the transaction actually belongs to a block, we investigate the problem of private retrieval of Merkle proofs (i.e. proofs of inclusion/membership) in a Merkle tree. In this setting, one or more servers store the nodes of a binary tree (a Merkle tree), while a client wants to retrieve the set of nodes along a root-to-leaf path (i.e. a Merkle proof, after appropriate node swapping operations), without letting the servers know which path is being retrieved. We propose a method that partitions the Merkle tree to enable parallel private retrieval of the Merkle proofs. The partitioning step is based on a novel tree coloring called ancestral coloring in which nodes that have ancestor-descendant relationship must have distinct colors. To minimize the retrieval time, the coloring is required to be balanced, i.e. the sizes of the color classes differ by at most one. We develop a fast algorithm to find a balanced (in fact, any) ancestral coloring in almost linear time in the number of tree nodes, which can handle trees with billions of nodes in a few minutes. Our partitioning method can be applied on top of any private information retrieval scheme, leading to the minimum storage overhead and fastest running times compared to existing approaches.
We are interested in creating statistical methods to provide informative summaries of random fields through the geometry of their excursion sets. To this end, we introduce an estimator for the length of the perimeter of excursion sets of random fields on $\mathbb{R}^2$ observed over regular square tilings. The proposed estimator acts on the empirically accessible binary digital images of the excursion regions and computes the length of a piecewise linear approximation of the excursion boundary. The estimator is shown to be consistent as the pixel size decreases, without the need of any normalization constant, and with neither assumption of Gaussianity nor isotropy imposed on the underlying random field. In this general framework, even when the domain grows to cover $\mathbb{R}^2$, the estimation error is shown to be of smaller order than the side length of the domain. For affine, strongly mixing random fields, this translates to a multivariate Central Limit Theorem for our estimator when multiple levels are considered simultaneously. Finally, we conduct several numerical studies to investigate statistical properties of the proposed estimator in the finite-sample data setting.
This paper focuses on the algebraic theory underlying the study of the complexity and the algorithms for the Constraint Satisfaction Problem (CSP). We unify, simplify, and extend parts of the three approaches that have been developed to study the CSP over finite templates - absorption theory that was used to characterize CSPs solvable by local consistency methods (JACM'14), and Bulatov's and Zhuk's theories that were used for two independent proofs of the CSP Dichotomy Theorem (FOCS'17, JACM'20). As the first contribution we present an elementary theorem about primitive positive definability and use it to obtain the starting points of Bulatov's and Zhuk's proofs as corollaries. As the second contribution we propose and initiate a systematic study of minimal Taylor algebras. This class of algebras is broad enough so that it suffices to verify the CSP Dichotomy Theorem on this class only, but still is unusually well behaved. In particular, many concepts from the three approaches coincide in the class, which is in striking contrast with the general setting. We believe that the theory initiated in this paper will eventually result in a simple and more natural proof of the Dichotomy Theorem that employs a simpler and more efficient algorithm, and will help in attacking complexity questions in other CSP-related problems.
We provide a unified operational framework for the study of causality, non-locality and contextuality, in a fully device-independent and theory-independent setting. We define causaltopes, our chosen portmanteau of "causal polytopes", for arbitrary spaces of input histories and arbitrary choices of input contexts. We show that causaltopes are obtained by slicing simpler polytopes of conditional probability distributions with a set of causality equations, which we fully characterise. We provide efficient linear programs to compute the maximal component of an empirical model supported by any given sub-causaltope, as well as the associated causal fraction. We introduce a notion of causal separability relative to arbitrary causal constraints. We provide efficient linear programs to compute the maximal causally separable component of an empirical model, and hence its causally separable fraction, as the component jointly supported by certain sub-causaltopes. We study causal fractions and causal separability for several novel examples, including a selection of quantum switches with entangled or contextual control. In the process, we demonstrate the existence of "causal contextuality", a phenomenon where causal inseparability is clearly correlated to, or even directly implied by, non-locality and contextuality.
The vertex cover problem is a fundamental and widely studied combinatorial optimization problem. It is known that its standard linear programming relaxation is integral for bipartite graphs and half-integral for general graphs. As a consequence, the natural rounding algorithm based on this relaxation computes an optimal solution for bipartite graphs and a $2$-approximation for general graphs. This raises the question of whether one can interpolate the rounding curve of the standard linear programming relaxation in a beyond the worst-case manner, depending on how close the graph is to being bipartite. In this paper, we consider a simple rounding algorithm that exploits the knowledge of an induced bipartite subgraph to attain improved approximation ratios. Equivalently, we suppose that we work with a pair $(G, S)$, consisting of a graph with an odd cycle transversal. If $S$ is a stable set, we prove a tight approximation ratio of $1 + 1/\rho$, where $2\rho -1$ denotes the odd girth (i.e., length of the shortest odd cycle) of the contracted graph $\tilde{G} := G /S$ and satisfies $\rho \in [2,\infty]$. If $S$ is an arbitrary set, we prove a tight approximation ratio of $\left(1+1/\rho \right) (1 - \alpha) + 2 \alpha$, where $\alpha \in [0,1]$ is a natural parameter measuring the quality of the set $S$. The technique used to prove tight improved approximation ratios relies on a structural analysis of the contracted graph $\tilde{G}$. Tightness is shown by constructing classes of weight functions matching the obtained upper bounds. As a byproduct of the structural analysis, we obtain improved tight bounds on the integrality gap and the fractional chromatic number of 3-colorable graphs. We also discuss algorithmic applications in order to find good odd cycle transversals and show optimality of the analysis.
A striking pathology of semidefinite programs (SDPs) is illustrated by a classical example of Khachiyan: feasible solutions in SDPs may need exponential space even to write down. Such exponential size solutions are the main obstacle to solve a long standing, fundamental open problem: can we decide feasibility of SDPs in polynomial time? The consensus seems that SDPs with large size solutions are rare. However, here we prove that they are actually quite common: a linear change of variables transforms every strictly feasible SDP into a Khachiyan type SDP, in which the leading variables are large. As to ``how large", that depends on the singularity degree of a dual problem. Further, we present some SDPs coming from sum-of-squares proofs, in which large solutions appear naturally, without any change of variables. We also partially answer the question: how do we represent such large solutions in polynomial space?
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.