Time-Aware Shaper (TAS) is a time-triggered scheduling mechanism that ensures bounded latency for time-critical Scheduled Traffic (ST) flows. The Linux kernel implementation (a.k.a TAPRIO) has limited capabilities due to varying CPU workloads and thus does not offer tight latency bound for the ST flows. Also, currently only higher cycle times are possible. Other software implementations are limited to simulation studies without physical implementation. In this paper, we present $\mu$TAS, a MicroC-based hardware implementation of TAS onto a programmable SmartNIC. $\mu$TAS takes advantage of the parallel-processing architecture of the SmartNIC to configure the scheduling behaviour of its queues at runtime. To demonstrate the effectiveness of $\mu$TAS, we built a Time-Sensitive Networking (TSN) testbed from scratch. This consists of multiple end-hosts capable of generating ST and Best Effort (BE) flows and TSN switches equipped with SmartNICs running $\mu$TAS. Time synchronization is maintained between the switches and hosts. Our experiments demonstrate that the ST flows experience a bounded latency of the order of tens of microseconds.
Aberrant respondents are common but yet extremely detrimental to the quality of social surveys or questionnaires. Recently, factor mixture models have been employed to identify individuals providing deceptive or careless responses. We propose a comprehensive factor mixture model that combines confirmatory and exploratory factor models to represent both the non-aberrant and aberrant components of the responses. The flexibility of the proposed solution allows for the identification of two of the most common aberant response styles, namely faking and careless responding. We validated our approach by means of two simulations and two case studies. The results indicate the effectiveness of the proposed model in handling with aberrant responses in social and behavioral surveys.
The recently proposed fixed-X knockoff is a powerful variable selection procedure that controls the false discovery rate (FDR) in any finite-sample setting, yet its theoretical insights are difficult to show beyond Gaussian linear models. In this paper, we make the first attempt to extend the fixed-X knockoff to partially linear models by using generalized knockoff features, and propose a new stability generalized knockoff (Stab-GKnock) procedure by incorporating selection probability as feature importance score. We provide FDR control and power guarantee under some regularity conditions. In addition, we propose a two-stage method under high dimensionality by introducing a new joint feature screening procedure, with guaranteed sure screening property. Extensive simulation studies are conducted to evaluate the finite-sample performance of the proposed method. A real data example is also provided for illustration.
The classical arguments employed when obtaining error estimates of Finite Element (FE) discretisations of elliptic problems lead to more restrictive assumptions on the regularity of the exact solution when applied to non-conforming methods. The so-called minimal regularity estimates available in the literature relax some of these assumptions, but are not truly of -minimal regularity-, since a data oscillation term appears in the error estimate. Employing an approach based on a smoothing operator, we derive for the first time error estimates for Discontinuous Galerkin (DG) type discretisations of non-linear problems with $(p,\delta)$-structure that only assume the natural $W^{1,p}$-regularity of the exact solution, and which do not contain any oscillation terms.
Advancements in artificial intelligence (AI) over the last decade demonstrate that machines can exhibit communicative behavior and influence how humans think, feel, and behave. In fact, the recent development of ChatGPT has shown that large language models (LLMs) can be leveraged to generate high-quality communication content at scale and across domains, suggesting that they will be increasingly used in practice. However, many questions remain about how knowing the source of the messages influences recipients' evaluation of and preference for AI-generated messages compared to human-generated messages. This paper investigated this topic in the context of vaping prevention messaging. In Study 1, which was pre-registered, we examined the influence of source disclosure on people's evaluation of AI-generated health prevention messages compared to human-generated messages. We found that source disclosure (i.e., labeling the source of a message as AI vs. human) significantly impacted the evaluation of the messages but did not significantly alter message rankings. In a follow-up study (Study 2), we examined how the influence of source disclosure may vary by the participants' negative attitudes towards AI. We found a significant moderating effect of negative attitudes towards AI on message evaluation, but not for message selection. However, for those with moderate levels of negative attitudes towards AI, source disclosure decreased the preference for AI-generated messages. Overall, the results of this series of studies showed a slight bias against AI-generated messages once the source was disclosed, adding to the emerging area of study that lies at the intersection of AI and communication.
The video-language (VL) pretraining has achieved remarkable improvement in multiple downstream tasks. However, the current VL pretraining framework is hard to extend to multiple modalities (N modalities, N>=3) beyond vision and language. We thus propose LanguageBind, taking the language as the bind across different modalities because the language modality is well-explored and contains rich semantics. Specifically, we freeze the language encoder acquired by VL pretraining, then train encoders for other modalities with contrastive learning. As a result, all modalities are mapped to a shared feature space, implementing multi-modal semantic alignment. While LanguageBind ensures that we can extend VL modalities to N modalities, we also need a high-quality dataset with alignment data pairs centered on language. We thus propose VIDAL-10M with Video, Infrared, Depth, Audio and their corresponding Language, naming as VIDAL-10M. In our VIDAL-10M, all videos are from short video platforms with complete semantics rather than truncated segments from long videos, and all the video, depth, infrared, and audio modalities are aligned to their textual descriptions. After pretraining on VIDAL-10M, we outperform ImageBind by 5.8% R@1 on the MSR-VTT dataset with only 15% of the parameters in the zero-shot video-text retrieval task. Beyond this, our LanguageBind has greatly improved in the zero-shot video, audio, depth, and infrared understanding tasks. For instance, LanguageBind surpassing InterVideo by 1.9% on MSR-VTT, 8.8% on MSVD, 6.3% on DiDeMo, and 4.4% on ActivityNet. On the LLVIP and NYU-D datasets, LanguageBind outperforms ImageBind with 23.8% and 11.1% top-1 accuracy. Code address: //github.com/PKU-YuanGroup/LanguageBind.
In Computational Fluid Dynamics (CFD), coarse mesh simulations offer computational efficiency but often lack precision. Applying conventional super-resolution to these simulations poses a significant challenge due to the fundamental contrast between downsampling high-resolution images and authentically emulating low-resolution physics. The former method conserves more of the underlying physics, surpassing the usual constraints of real-world scenarios. We propose a novel definition of super-resolution tailored for PDE-based problems. Instead of simply downsampling from a high-resolution dataset, we use coarse-grid simulated data as our input and predict fine-grid simulated outcomes. Employing a physics-infused UNet upscaling method, we demonstrate its efficacy across various 2D-CFD problems such as discontinuity detection in Burger's equation, Methane combustion, and fouling in Industrial heat exchangers. Our method enables the generation of fine-mesh solutions bypassing traditional simulation, ensuring considerable computational saving and fidelity to the original ground truth outcomes. Through diverse boundary conditions during training, we further establish the robustness of our method, paving the way for its broad applications in engineering and scientific CFD solvers.
Stochastic Primal-Dual Hybrid Gradient (SPDHG) is an algorithm proposed by Chambolle et al. (2018) to efficiently solve a wide class of nonsmooth large-scale optimization problems. In this paper we contribute to its theoretical foundations and prove its almost sure convergence for convex but neither necessarily strongly convex nor smooth functionals, as well as for any random sampling. In addition, we study SPDHG for parallel Magnetic Resonance Imaging reconstruction, where data from different coils are randomly selected at each iteration. We apply SPDHG using a wide range of random sampling methods and compare its performance across a range of settings, including mini-batch size and step size parameters. We show that the sampling can significantly affect the convergence speed of SPDHG and for many cases an optimal sampling can be identified.
Common regularization algorithms for linear regression, such as LASSO and Ridge regression, rely on a regularization hyperparameter that balances the tradeoff between minimizing the fitting error and the norm of the learned model coefficients. As this hyperparameter is scalar, it can be easily selected via random or grid search optimizing a cross-validation criterion. However, using a scalar hyperparameter limits the algorithm's flexibility and potential for better generalization. In this paper, we address the problem of linear regression with l2-regularization, where a different regularization hyperparameter is associated with each input variable. We optimize these hyperparameters using a gradient-based approach, wherein the gradient of a cross-validation criterion with respect to the regularization hyperparameters is computed analytically through matrix differential calculus. Additionally, we introduce two strategies tailored for sparse model learning problems aiming at reducing the risk of overfitting to the validation data. Numerical examples demonstrate that our multi-hyperparameter regularization approach outperforms LASSO, Ridge, and Elastic Net regression. Moreover, the analytical computation of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation, especially when handling a large number of input variables. Application to the identification of over-parameterized Linear Parameter-Varying models is also presented.
We introduce numerical solvers for the steady-state Boltzmann equation based on the symmetric Gauss-Seidel (SGS) method. Due to the quadratic collision operator in the Boltzmann equation, the SGS method requires solving a nonlinear system on each grid cell, and we consider two methods, namely Newton's method and the fixed-point iteration, in our numerical tests. For small Knudsen numbers, our method has an efficiency between the classical source iteration and the modern generalized synthetic iterative scheme, and the complexity of its implementation is closer to the source iteration. A variety of numerical tests are carried out to demonstrate its performance, and it is concluded that the proposed method is suitable for applications with moderate to large Knudsen numbers.
We propose and compare methods for the analysis of extreme events in complex systems governed by PDEs that involve random parameters, in situations where we are interested in quantifying the probability that a scalar function of the system's solution is above a threshold. If the threshold is large, this probability is small and its accurate estimation is challenging. To tackle this difficulty, we blend theoretical results from large deviation theory (LDT) with numerical tools from PDE-constrained optimization. Our methods first compute parameters that minimize the LDT-rate function over the set of parameters leading to extreme events, using adjoint methods to compute the gradient of this rate function. The minimizers give information about the mechanism of the extreme events as well as estimates of their probability. We then propose a series of methods to refine these estimates, either via importance sampling or geometric approximation of the extreme event sets. Results are formulated for general parameter distributions and detailed expressions are provided when Gaussian distributions. We give theoretical and numerical arguments showing that the performance of our methods is insensitive to the extremeness of the events we are interested in. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore. Tsunamis are typically caused by a sudden, unpredictable change of the ocean floor elevation during an earthquake. We model this change as a random process, which takes into account the underlying physics. We use the one-dimensional shallow water equation to model tsunamis numerically. In the context of this example, we present a comparison of our methods for extreme event probability estimation, and find which type of ocean floor elevation change leads to the largest tsunamis on shore.