To apply the latest computer vision techniques that require a large computational cost in real industrial applications, knowledge distillation methods (KDs) are essential. Existing logit-based KDs apply the constant temperature scaling to all samples in dataset, limiting the utilization of knowledge inherent in each sample individually. In our approach, we classify the dataset into two categories (i.e., low energy and high energy samples) based on their energy score. Through experiments, we have confirmed that low energy samples exhibit high confidence scores, indicating certain predictions, while high energy samples yield low confidence scores, meaning uncertain predictions. To distill optimal knowledge by adjusting non-target class predictions, we apply a higher temperature to low energy samples to create smoother distributions and a lower temperature to high energy samples to achieve sharper distributions. When compared to previous logit-based and feature-based methods, our energy-based KD (Energy KD) achieves better performance on various datasets. Especially, Energy KD shows significant improvements on CIFAR-100-LT and ImageNet datasets, which contain many challenging samples. Furthermore, we propose high energy-based data augmentation (HE-DA) for further improving the performance. We demonstrate that meaningful performance improvement could be achieved by augmenting only 20-50% of dataset, suggesting that it can be employed on resource-limited devices. To the best of our knowledge, this paper represents the first attempt to make use of energy function in knowledge distillation and data augmentation, and we believe it will greatly contribute to future research.
While much work has been done recently in the realm of model-based control of soft robots and soft-rigid hybrids, most works examine robots that have an inherently serial structure. While these systems have been prevalent in the literature, there is an increasing trend toward designing soft-rigid hybrids with intrinsically coupled elasticity between various degrees of freedom. In this work, we seek to address the issues of modeling and controlling such structures, particularly when underactuated. We introduce several simple models for elastic coupling, typical of those seen in these systems. We then propose a controller that compensates for the elasticity, and we prove its stability with Lyapunov methods without relying on the elastic dominance assumption. This controller is applicable to the general class of underactuated soft robots. After evaluating the controller in simulated cases, we then develop a simple hardware platform to evaluate both the models and the controller. Finally, using the hardware, we demonstrate a novel use case for underactuated, elastically coupled systems in "sensorless" force control.
Ensuring the highest training throughput to maximize resource efficiency, while maintaining fairness among users, is critical for deep learning (DL) training in heterogeneous GPU clusters. However, current DL schedulers provide only limited fairness properties and suboptimal training throughput, impeding tenants from effectively leveraging heterogeneous resources. The underlying design challenge stems from inherent conflicts between efficiency and fairness properties. In this paper, we introduce OEF, a new resource allocation framework specifically developed for achieving optimal resource efficiency and ensuring diverse fairness properties in heterogeneous GPU clusters. By integrating resource efficiency and fairness within a global optimization framework, OEF is capable of providing users with maximized overall efficiency, as well as various guarantees of fairness, in both cooperative and non-cooperative environments. We have implemented OEF in a cluster resource manager and conducted large-scale experiments, showing that OEF can improve the overall training throughput by up to 32% while improving fairness compared to state-of-the-art heterogeneity-aware schedulers.
The ability to identify granular materials facilitates the emergence of various new applications in robotics, ranging from cooking at home to truck loading at mining sites. However, granular material identification remains a challenging and underexplored area. In this work, we present a novel interactive material identification framework that enables robots to identify a wide range of granular materials using only a force-torque sensor for perception. Our framework, comprising interactive exploration, feature extraction, and classification stages, prioritizes simplicity and transparency for seamless integration into various manipulation pipelines. We evaluate the proposed approach through extensive experiments with a real-world dataset comprising 11 granular materials, which we also make publicly available. Additionally, we conducted a comprehensive qualitative analysis of the dataset to offer deeper insights into its nature, aiding future development. Our results show that the proposed method is capable of accurately identifying a wide range of granular materials solely relying on force measurements obtained from direct interaction with the materials. Code and dataset are available at: //irobotics.aalto.fi/indentify_granular/.
Sensor measurements are mission-critical for monitoring and controlling power systems because they provide real-time insight into the grid operating condition; however, confidence in these insights depends greatly on the quality of the sensor data. Uncertainty in sensor measurements is an intrinsic aspect of the measurement process. In this paper, we develop an analytical method to quantify the impact of measurement uncertainties in numerical methods that employ the Koopman operator to identify nonlinear dynamics based on recorded data. In particular, we quantify the confidence interval of each element in the push-forward matrix from which a subset of the Koopman operator's discrete spectrum is estimated. We provide a detailed numerical analysis of the developed method applied to numerical simulations and field data collected from experiments conducted in a megawatt-scale facility at the National Renewable Energy Laboratory.
Two algorithms for computing the rational univariate representation of zero-dimensional ideals with parameters are presented in the paper. Different from the rational univariate representation of zero-dimensional ideals without parameters, the number of zeros of zero-dimensional ideals with parameters under various specializations is different, which leads to choosing and checking the separating element, the key to computing the rational univariate representation, is difficult. In order to pick out the separating element, by partitioning the parameter space we can ensure that under each branch the ideal has the same number of zeros. Subsequently with the help of the extended subresultant theorem for parametric cases, two ideas are given to conduct the further partition of parameter space for choosing and checking the separating element. Based on these, we give two algorithms for computing rational univariate representations of zero-dimensional ideals with parameters. Furthermore, the two algorithms have been implemented on the computer algebra system Singular. Experimental data show that the second algorithm has the better performance in contrast to the first one.
Topic modelling, as a well-established unsupervised technique, has found extensive use in automatically detecting significant topics within a corpus of documents. However, classic topic modelling approaches (e.g., LDA) have certain drawbacks, such as the lack of semantic understanding and the presence of overlapping topics. In this work, we investigate the untapped potential of large language models (LLMs) as an alternative for uncovering the underlying topics within extensive text corpora. To this end, we introduce a framework that prompts LLMs to generate topics from a given set of documents and establish evaluation protocols to assess the clustering efficacy of LLMs. Our findings indicate that LLMs with appropriate prompts can stand out as a viable alternative, capable of generating relevant topic titles and adhering to human guidelines to refine and merge topics. Through in-depth experiments and evaluation, we summarise the advantages and constraints of employing LLMs in topic extraction.
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.