For any $\varepsilon > 0$, we prove that $k$-Dimensional Matching is hard to approximate within a factor of $k/(12 + \varepsilon)$ for large $k$ unless $\textsf{NP} \subseteq \textsf{BPP}$. Listed in Karp's 21 $\textsf{NP}$-complete problems, $k$-Dimensional Matching is a benchmark computational complexity problem which we find as a special case of many constrained optimization problems over independence systems including: $k$-Set Packing, $k$-Matroid Intersection, and Matroid $k$-Parity. For all the aforementioned problems, the best known lower bound was a $\Omega(k /\log(k))$-hardness by Hazan, Safra, and Schwartz. In contrast, state-of-the-art algorithms achieved an approximation of $O(k)$. Our result narrows down this gap to a constant and thus provides a rationale for the observed algorithmic difficulties. The crux of our result hinges on a novel approximation preserving gadget from $R$-degree bounded $k$-CSPs over alphabet size $R$ to $kR$-Dimensional Matching. Along the way, we prove that $R$-degree bounded $k$-CSPs over alphabet size $R$ are hard to approximate within a factor $\Omega_k(R)$ using known randomised sparsification methods for CSPs.
A non-uniform implicit-explicit L1 mixed finite element method (IMEX-L1-MFEM) is investigated for a class of time-fractional partial integro-differential equations (PIDEs) with space-time dependent coefficients and non-self-adjoint elliptic part. The proposed fully discrete method combines an IMEX-L1 method on a graded mesh in the temporal variable with a mixed finite element method in spatial variables. The focus of the study is to analyze stability results and to establish optimal error estimates, up to a logarithmic factor, for both the solution and the flux in $L^2$-norm when the initial data $u_0\in H_0^1(\Omega)\cap H^2(\Omega)$. Additionally, an error estimate in $L^\infty$-norm is derived for 2D problems. All the derived estimates and bounds in this article remain valid as $\alpha\to 1^{-}$, where $\alpha$ is the order of the Caputo fractional derivative. Finally, the results of several numerical experiments conducted at the end of this paper are confirming our theoretical findings.
Formal theories of arithmetic have traditionally been based on either classical or intuitionistic logic, leading to the development of Peano and Heyting arithmetic, respectively. We propose to use $\mu$MALL as a formal theory of arithmetic based on linear logic. This formal system is presented as a sequent calculus proof system that extends the standard proof system for multiplicative-additive linear logic (MALL) with the addition of the logical connectives universal and existential quantifiers (first-order quantifiers), term equality and non-equality, and the least and greatest fixed point operators. We first demonstrate how functions defined using $\mu$MALL relational specifications can be computed using a simple proof search algorithm. By incorporating weakening and contraction into $\mu$MALL, we obtain $\mu$LK+, a natural candidate for a classical sequent calculus for arithmetic. While important proof theory results are still lacking for $\mu$LK+ (including cut-elimination and the completeness of focusing), we prove that $\mu$LK+ is consistent and that it contains Peano arithmetic. We also prove some conservativity results regarding $\mu$LK+ over $\mu$MALL.
In this research, we introduce an algorithm that produces what appears to be a new mathematical object as a consequence of projecting the \( n \)-dimensional \( Z \)-curve onto an \( n \)-dimensional sphere. The first part presents the algorithm that enables this transformation, and the second part focuses on studying its properties.
We study the concepts of the $\ell_p$-Vietoris-Rips simplicial set and the $\ell_p$-Vietoris-Rips complex of a metric space, where $1\leq p \leq \infty.$ This theory unifies two established theories: for $p=\infty,$ this is the classical theory of Vietoris-Rips complexes, and for $p=1,$ this corresponds to the blurred magnitude homology theory. We prove several results that are known for the Vietoris-Rips complex in the general case: (1) we prove a stability theorem for the corresponding version of the persistent homology; (2) we show that, for a compact Riemannian manifold and a sufficiently small scale parameter, all the "$\ell_p$-Vietoris-Rips spaces" are homotopy equivalent to the manifold; (3) we demonstrate that the $\ell_p$-Vietoris-Rips spaces are invariant (up to homotopy) under taking the metric completion. Additionally, we show that the limit of the homology groups of the $\ell_p$-Vietoris-Rips spaces, as the scale parameter tends to zero, does not depend on $p$; and that the homology groups of the $\ell_p$-Vietoris-Rips spaces commute with filtered colimits of metric spaces.
N. G. de Bruijn (1958) studied the asymptotic expansion of iterates of sin$(x)$ with $0 < x \leq \pi/2$. Bencherif & Robin (1994) generalized this result to increasing analytic functions $f(x)$ with an attractive fixed point at 0 and $x > 0$ suitably small. Mavecha & Laohakosol (2013) formulated an algorithm for explicitly deriving required parameters. We review their method, testing it initally on the logistic function $\ell(x)$, a certain radical function $r(x)$, and later on several transcendental functions. Along the way, we show how $\ell(x)$ and $r(x)$ are kindred functions; the same is also true for sin$(x)$ and arcsinh$(x)$.
The fairness of clustering algorithms has gained widespread attention across various areas, including machine learning, In this paper, we study fair $k$-means clustering in Euclidean space. Given a dataset comprising several groups, the fairness constraint requires that each cluster should contain a proportion of points from each group within specified lower and upper bounds. Due to these fairness constraints, determining the optimal locations of $k$ centers is a quite challenging task. We propose a novel ``Relax and Merge'' framework that returns a $(1+4\rho + O(\epsilon))$-approximate solution, where $\rho$ is the approximate ratio of an off-the-shelf vanilla $k$-means algorithm and $O(\epsilon)$ can be an arbitrarily small positive number. If equipped with a PTAS of $k$-means, our solution can achieve an approximation ratio of $(5+O(\epsilon))$ with only a slight violation of the fairness constraints, which improves the current state-of-the-art approximation guarantee. Furthermore, using our framework, we can also obtain a $(1+4\rho +O(\epsilon))$-approximate solution for the $k$-sparse Wasserstein Barycenter problem, which is a fundamental optimization problem in the field of optimal transport, and a $(2+6\rho)$-approximate solution for the strictly fair $k$-means clustering with no violation, both of which are better than the current state-of-the-art methods. In addition, the empirical results demonstrate that our proposed algorithm can significantly outperform baseline approaches in terms of clustering cost.
QAC$^0$ is the class of constant-depth quantum circuits with polynomially many ancillary qubits, where Toffoli gates on arbitrarily many qubits are allowed. In this work, we show that the parity function cannot be computed in QAC$^0$, resolving a long-standing open problem in quantum circuit complexity more than twenty years old. As a result, this proves ${\rm QAC}^0 \subsetneqq {\rm QAC}_{\rm wf}^0$. We also show that any QAC circuit of depth $d$ that approximately computes parity on $n$ bits requires $2^{\widetilde{\Omega}(n^{1/d})}$ ancillary qubits, which is close to tight. This implies a similar lower bound on approximately preparing cat states using QAC circuits. Finally, we prove a quantum analog of the Linial-Mansour-Nisan theorem for QAC$^0$. This implies that, for any QAC$^0$ circuit $U$ with $a={\rm poly}(n)$ ancillary qubits, and for any $x\in\{0,1\}^n$, the correlation between $Q(x)$ and the parity function is bounded by ${1}/{2} + 2^{-\widetilde{\Omega}(n^{1/d})}$, where $Q(x)$ denotes the output of measuring the output qubit of $U|x,0^a\rangle$. All the above consequences rely on the following technical result. If $U$ is a QAC$^0$ circuit with $a={\rm poly}(n)$ ancillary qubits, then there is a distribution $\mathcal{D}$ of bounded polynomials of degree polylog$(n)$ such that with high probability, a random polynomial from $\mathcal{D}$ approximates the function $\langle x,0^a| U^\dag Z_{n+1} U |x,0^a\rangle$ for a large fraction of $x\in \{0,1\}^n$. This result is analogous to the Razborov-Smolensky result on the approximation of AC$^0$ circuits by random low-degree polynomials.
We present a new parallel computational framework for the efficient solution of a class of $L^2$/$L^1$-regularized optimal control problems governed by semi-linear elliptic partial differential equations (PDEs). The main difficulty in solving this type of problem is the nonlinearity and non-smoothness of the $L^1$-term in the cost functional, which we address by employing a combination of several tools. First, we approximate the non-differentiable projection operator appearing in the optimality system by an appropriately chosen regularized operator and establish convergence of the resulting system's solutions. Second, we apply a continuation strategy to control the regularization parameter to improve the behavior of (damped) Newton methods. Third, we combine Newton's method with a domain-decomposition-based nonlinear preconditioning, which improves its robustness properties and allows for parallelization. The efficiency of the proposed numerical framework is demonstrated by extensive numerical experiments.
This paper employs a localized orthogonal decomposition (LOD) method with $H^1$ interpolation for solving the multiscale elliptic problem. This method does not need any assumptions on scale separation. We give a priori error estimate for the proposed method. The theoretical results are conformed by various numerical experiments.
Cohen-Addad, Le, Pilipczuk, and Pilipczuk [CLPP23] recently constructed a stochastic embedding with expected $1+\varepsilon$ distortion of $n$-vertex planar graphs (with polynomial aspect ratio) into graphs of treewidth $O(\varepsilon^{-1}\log^{13} n)$. Their embedding is the first to achieve polylogarithmic treewidth. However, there remains a large gap between the treewidth of their embedding and the treewidth lower bound of $\Omega(\log n)$ shown by Carroll and Goel [CG04]. In this work, we substantially narrow the gap by constructing a stochastic embedding with treewidth $O(\varepsilon^{-1}\log^{3} n)$. We obtain our embedding by improving various steps in the CLPP construction. First, we streamline their embedding construction by showing that one can construct a low-treewidth embedding for any graph from (i) a stochastic hierarchy of clusters and (ii) a stochastic balanced cut. We shave off some logarithmic factors in this step by using a single hierarchy of clusters. Next, we construct a stochastic hierarchy of clusters with optimal separating probability and hop bound based on shortcut partition [CCLMST23, CCLMST24]. Finally, we construct a stochastic balanced cut with an improved trade-off between the cut size and the number of cuts. This is done by a new analysis of the contraction sequence introduced by [CLPP23]; our analysis gives an optimal treewidth bound for graphs admitting a contraction sequence.