亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Integrating Internet of Things (IoT) technology inside the cold supply chain can enhance transparency, efficiency, and quality, optimizing operating procedures and increasing productivity. The integration of IoT in this complicated setting is hindered by specific barriers that need a thorough examination. Prominent barriers to IoT implementation in the cold supply chain are identified using a two-stage model. After reviewing the available literature on the topic of IoT implementation, a total of 13 barriers were found. The survey data was cross-validated for quality, and Cronbach's alpha test was employed to ensure validity. This research applies the interpretative structural modeling technique in the first phase to identify the main barriers. Among those barriers, "regularity compliance" and "cold chain networks" are key drivers for IoT adoption strategies. MICMAC's driving and dependence power element categorization helps evaluate the barrier interactions. In the second phase of this research, a decision-making trial and evaluation laboratory methodology was employed to identify causal relationships between barriers and evaluate them according to their relative importance. Each cause is a potential drive, and if its efficiency can be enhanced, the system as a whole benefits. The research findings provide industry stakeholders, governments, and organizations with significant drivers of IoT adoption to overcome these barriers and optimize the utilization of IoT technology to improve the effectiveness and reliability of the cold supply chain.

相關內容

Instance segmentation is a fundamental task in computer vision with broad applications across various industries. In recent years, with the proliferation of deep learning and artificial intelligence applications, how to train effective models with limited data has become a pressing issue for both academia and industry. In the Visual Inductive Priors challenge (VIPriors2023), participants must train a model capable of precisely locating individuals on a basketball court, all while working with limited data and without the use of transfer learning or pre-trained models. We propose Memory effIciency inStance Segmentation framework based on visual inductive prior flow propagation that effectively incorporates inherent prior information from the dataset into both the data preprocessing and data augmentation stages, as well as the inference phase. Our team (ACVLAB) experiments demonstrate that our model achieves promising performance (0.509 [email protected]:0.95) even under limited data and memory constraints.

This paper investigates the development and optimization of control algorithms for mobile robotics, with a keen focus on their implementation in Field-Programmable Gate Arrays (FPGAs). It delves into both classical control approaches such as PID and modern techniques including deep learning, addressing their application in sectors ranging from industrial automation to medical care. The study highlights the practical challenges and advancements in embedding these algorithms into FPGAs, which offer significant benefits for mobile robotics due to their high-speed processing and parallel computation capabilities. Through an analysis of various control strategies, the paper showcases the improvements in robot performance, particularly in navigation and obstacle avoidance. It emphasizes the critical role of FPGAs in enhancing the efficiency and adaptability of control algorithms in dynamic environments. Additionally, the research discusses the difficulties in benchmarking and evaluating the performance of these algorithms in real-world applications, suggesting a need for standardized evaluation criteria. The contribution of this work lies in its comprehensive examination of control algorithms' potential in FPGA-based mobile robotics, offering insights into future research directions for improving robotic autonomy and operational efficiency.

Large-scale public datasets with high-quality annotations are rarely available for intelligent medical imaging research, due to data privacy concerns and the cost of annotations. In this paper, we release SynFundus-1M, a high-quality synthetic dataset containing over one million fundus images in terms of \textbf{eleven disease types}. Furthermore, we deliberately assign four readability labels to the key regions of the fundus images. To the best of our knowledge, SynFundus-1M is currently the largest fundus dataset with the most sophisticated annotations. Leveraging over 1.3 million private authentic fundus images from various scenarios, we trained a powerful Denoising Diffusion Probabilistic Model, named SynFundus-Generator. The released SynFundus-1M are generated by SynFundus-Generator under predefined conditions. To demonstrate the value of SynFundus-1M, extensive experiments are designed in terms of the following aspect: 1) Authenticity of the images: we randomly blend the synthetic images with authentic fundus images, and find that experienced annotators can hardly distinguish the synthetic images from authentic ones. Moreover, we show that the disease-related vision features (e.g. lesions) are well simulated in the synthetic images. 2) Effectiveness for down-stream fine-tuning and pretraining: we demonstrate that retinal disease diagnosis models of either convolutional neural networks (CNN) or Vision Transformer (ViT) architectures can benefit from SynFundus-1M, and compared to the datasets commonly used for pretraining, models trained on SynFundus-1M not only achieve superior performance but also demonstrate faster convergence on various downstream tasks. SynFundus-1M is already public available for the open-source community.

Older adults' growing use of the internet and related technologies, further accelerated by the COVID-19 pandemic, has prompted not only a critical examination of their behaviors and attitudes about online threats but also a greater understanding of the roles of specific characteristics within this population group. Based on survey data and using descriptive and inferential statistics, this empirical study delves into this matter. The behaviors and attitudes of a group of older adults aged 60 years and older (n=275) regarding different dimensions of online safety and cybersecurity are investigated. The results show that older adults report a discernible degree of concern about the security of their personal information. Despite the varied precautions taken, most of them do not know where to report online threats. What is more, regarding key demographics, the study found some significant differences in terms of gender and age group, but not disability status. This implies that older adults do not seem to constitute a homogeneous group when it comes to attitudes and behaviors regarding safety and security online. The study concludes that support systems should include older adults in the development of protective measures and acknowledge their diversity. The implications of the results are discussed and some directions for future research are proposed.

Systematic Literature Reviews (SLRs) have become the foundation of evidence-based studies, enabling researchers to identify, classify, and combine existing studies based on specific research questions. Conducting an SLR is largely a manual process. Over the previous years, researchers have made significant progress in automating certain phases of the SLR process, aiming to reduce the effort and time needed to carry out high-quality SLRs. However, there is still a lack of AI agent-based models that automate the entire SLR process. To this end, we introduce a novel multi-AI agent model designed to fully automate the process of conducting an SLR. By utilizing the capabilities of Large Language Models (LLMs), our proposed model streamlines the review process, enhancing efficiency and accuracy. The model operates through a user-friendly interface where researchers input their topic, and in response, the model generates a search string used to retrieve relevant academic papers. Subsequently, an inclusive and exclusive filtering process is applied, focusing on titles relevant to the specific research area. The model then autonomously summarizes the abstracts of these papers, retaining only those directly related to the field of study. In the final phase, the model conducts a thorough analysis of the selected papers concerning predefined research questions. We also evaluated the proposed model by sharing it with ten competent software engineering researchers for testing and analysis. The researchers expressed strong satisfaction with the proposed model and provided feedback for further improvement. The code for this project can be found on the GitHub repository at //github.com/GPT-Laboratory/SLR-automation.

This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Recommender systems (RSs) have been the most important technology for increasing the business in Taobao, the largest online consumer-to-consumer (C2C) platform in China. The billion-scale data in Taobao creates three major challenges to Taobao's RS: scalability, sparsity and cold start. In this paper, we present our technical solutions to address these three challenges. The methods are based on the graph embedding framework. We first construct an item graph from users' behavior history. Each item is then represented as a vector using graph embedding. The item embeddings are employed to compute pairwise similarities between all items, which are then used in the recommendation process. To alleviate the sparsity and cold start problems, side information is incorporated into the embedding framework. We propose two aggregation methods to integrate the embeddings of items and the corresponding side information. Experimental results from offline experiments show that methods incorporating side information are superior to those that do not. Further, we describe the platform upon which the embedding methods are deployed and the workflow to process the billion-scale data in Taobao. Using online A/B test, we show that the online Click-Through-Rate (CTRs) are improved comparing to the previous recommendation methods widely used in Taobao, further demonstrating the effectiveness and feasibility of our proposed methods in Taobao's live production environment.

Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.

北京阿比特科技有限公司