亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop simple differentially private optimization algorithms that move along directions of (expected) descent to find an approximate second-order solution for nonconvex ERM. We use line search, mini-batching, and a two-phase strategy to improve the speed and practicality of the algorithm. Numerical experiments demonstrate the effectiveness of these approaches.

相關內容

We design, to the best of our knowledge, the first differentially private (DP) stream processing system at scale. Our system --Differential Privacy SQL Pipelines (DP-SQLP)-- is built using a streaming framework similar to Spark streaming, and is built on top of the Spanner database and the F1 query engine from Google. Towards designing DP-SQLP we make both algorithmic and systemic advances, namely, we (i) design a novel DP key selection algorithm that can operate on an unbounded set of possible keys, and can scale to one billion keys that users have contributed, (ii) design a preemptive execution scheme for DP key selection that avoids enumerating all the keys at each triggering time, and (iii) use algorithmic techniques from DP continual observation to release a continual DP histogram of user contributions to different keys over the stream length. We empirically demonstrate the efficacy by obtaining at least $16\times$ reduction in error over meaningful baselines we consider.

In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) in Euclidean and general $\ell_p^d$ spaces. Specifically, we focus on three settings that are still far from well understood: (1) DP-SCO over a constrained and bounded (convex) set in Euclidean space; (2) unconstrained DP-SCO in $\ell_p^d$ space; (3) DP-SCO with heavy-tailed data over a constrained and bounded set in $\ell_p^d$ space. For problem (1), for both convex and strongly convex loss functions, we propose methods whose outputs could achieve (expected) excess population risks that are only dependent on the Gaussian width of the constraint set rather than the dimension of the space. Moreover, we also show the bound for strongly convex functions is optimal up to a logarithmic factor. For problems (2) and (3), we propose several novel algorithms and provide the first theoretical results for both cases when $1<p<2$ and $2\leq p\leq \infty$.

Gradient regularization, as described in \citet{barrett2021implicit}, is a highly effective technique for promoting flat minima during gradient descent. Empirical evidence suggests that this regularization technique can significantly enhance the robustness of deep learning models against noisy perturbations, while also reducing test error. In this paper, we explore the per-example gradient regularization (PEGR) and present a theoretical analysis that demonstrates its effectiveness in improving both test error and robustness against noise perturbations. Specifically, we adopt a signal-noise data model from \citet{cao2022benign} and show that PEGR can learn signals effectively while suppressing noise. In contrast, standard gradient descent struggles to distinguish the signal from the noise, leading to suboptimal generalization performance. Our analysis reveals that PEGR penalizes the variance of pattern learning, thus effectively suppressing the memorization of noises from the training data. These findings underscore the importance of variance control in deep learning training and offer useful insights for developing more effective training approaches.

Data-driven offline model-based optimization (MBO) is an established practical approach to black-box computational design problems for which the true objective function is unknown and expensive to query. However, the standard approach which optimizes designs against a learned proxy model of the ground truth objective can suffer from distributional shift. Specifically, in high-dimensional design spaces where valid designs lie on a narrow manifold, the standard approach is susceptible to producing out-of-distribution, invalid designs that "fool" the learned proxy model into outputting a high value. Using an ensemble rather than a single model as the learned proxy can help mitigate distribution shift, but naive formulations for combining gradient information from the ensemble, such as minimum or mean gradient, are still suboptimal and often hampered by non-convergent behavior. In this work, we explore alternate approaches for combining gradient information from the ensemble that are robust to distribution shift without compromising optimality of the produced designs. More specifically, we explore two functions, formulated as convex optimization problems, for combining gradient information: multiple gradient descent algorithm (MGDA) and conflict-averse gradient descent (CAGrad). We evaluate these algorithms on a diverse set of five computational design tasks. We compare performance of ensemble MBO with MGDA and ensemble MBO with CAGrad with three naive baseline algorithms: (a) standard single-model MBO, (b) ensemble MBO with mean gradient, and (c) ensemble MBO with minimum gradient. Our results suggest that MGDA and CAGrad strike a desirable balance between conservatism and optimality and can help robustify data-driven offline MBO without compromising optimality of designs.

A wireless federated learning system is investigated by allowing a server and workers to exchange uncoded information via orthogonal wireless channels. Since the workers frequently upload local gradients to the server via bandwidth-limited channels, the uplink transmission from the workers to the server becomes a communication bottleneck. Therefore, a one-shot distributed principle component analysis (PCA) is leveraged to reduce the dimension of uploaded gradients such that the communication bottleneck is relieved. A PCA-based wireless federated learning (PCA-WFL) algorithm and its accelerated version (i.e., PCA-AWFL) are proposed based on the low-dimensional gradients and the Nesterov's momentum. For the non-convex loss functions, a finite-time analysis is performed to quantify the impacts of system hyper-parameters on the convergence of the PCA-WFL and PCA-AWFL algorithms. The PCA-AWFL algorithm is theoretically certified to converge faster than the PCA-WFL algorithm. Besides, the convergence rates of PCA-WFL and PCA-AWFL algorithms quantitatively reveal the linear speedup with respect to the number of workers over the vanilla gradient descent algorithm. Numerical results are used to demonstrate the improved convergence rates of the proposed PCA-WFL and PCA-AWFL algorithms over the benchmarks.

In this work, we develop an approach mentioned by da Veiga and Gamboa in 2013. It consists in extending the very interestingpoint of view introduced in \cite{gine2008simple} to estimate general nonlinear integral functionals of a density on the real line, by using empirically a kernel estimator erasing the diagonal terms. Relaxing the positiveness assumption on the kernel and choosing a kernel of order large enough, we are able to prove a central limit theorem for estimating Sobol' indices of any order (the bias is killed thanks to this signed kernel).

In many applications, multiple parties have private data regarding the same set of users but on disjoint sets of attributes, and a server wants to leverage the data to train a model. To enable model learning while protecting the privacy of the data subjects, we need vertical federated learning (VFL) techniques, where the data parties share only information for training the model, instead of the private data. However, it is challenging to ensure that the shared information maintains privacy while learning accurate models. To the best of our knowledge, the algorithm proposed in this paper is the first practical solution for differentially private vertical federated k-means clustering, where the server can obtain a set of global centers with a provable differential privacy guarantee. Our algorithm assumes an untrusted central server that aggregates differentially private local centers and membership encodings from local data parties. It builds a weighted grid as the synopsis of the global dataset based on the received information. Final centers are generated by running any k-means algorithm on the weighted grid. Our approach for grid weight estimation uses a novel, light-weight, and differentially private set intersection cardinality estimation algorithm based on the Flajolet-Martin sketch. To improve the estimation accuracy in the setting with more than two data parties, we further propose a refined version of the weights estimation algorithm and a parameter tuning strategy to reduce the final k-means utility to be close to that in the central private setting. We provide theoretical utility analysis and experimental evaluation results for the cluster centers computed by our algorithm and show that our approach performs better both theoretically and empirically than the two baselines based on existing techniques.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司