Recent advancements in Spatial Transcriptomics (ST) technology have facilitated detailed gene expression analysis within tissue contexts. However, the high costs and methodological limitations of ST necessitate a more robust predictive model. In response, this paper introduces TRIPLEX, a novel deep learning framework designed to predict spatial gene expression from Whole Slide Images (WSIs). TRIPLEX uniquely harnesses multi-resolution features, capturing cellular morphology at individual spots, the local context around these spots, and the global tissue organization. By integrating these features through an effective fusion strategy, TRIPLEX achieves accurate gene expression prediction. Our comprehensive benchmark study, conducted on three public ST datasets and supplemented with Visium data from 10X Genomics, demonstrates that TRIPLEX outperforms current state-of-the-art models in Mean Squared Error (MSE), Mean Absolute Error (MAE), and Pearson Correlation Coefficient (PCC). The model's predictions align closely with ground truth gene expression profiles and tumor annotations, underscoring TRIPLEX's potential in advancing cancer diagnosis and treatment.
Human pose estimation is a fundamental and challenging task in computer vision. Larger-scale and more accurate keypoint annotations, while helpful for improving the accuracy of supervised pose estimation, are often expensive and difficult to obtain. Semi-supervised pose estimation tries to leverage a large amount of unlabeled data to improve model performance, which can alleviate the problem of insufficient labeled samples. The latest semi-supervised learning usually adopts a strong and weak data augmented teacher-student learning framework to deal with the challenge of "Human postural diversity and its long-tailed distribution". Appropriate data augmentation method is one of the key factors affecting the accuracy and generalization of semi-supervised models. Aiming at the problem that the difference of sample learning is not considered in the fixed keypoint masking augmentation method, this paper proposes an adaptive keypoint masking method, which can fully mine the information in the samples and obtain better estimation performance. In order to further improve the generalization and robustness of the model, this paper proposes a dual-branch data augmentation scheme, which can perform Mixup on samples and features on the basis of adaptive keypoint masking. The effectiveness of the proposed method is verified on COCO and MPII, outperforming the state-of-the-art semi-supervised pose estimation by 5.2% and 0.3%, respectively.
With the continuous advancement of vision language models (VLMs) technology, remarkable research achievements have emerged in the dermatology field, the fourth most prevalent human disease category. However, despite these advancements, VLM still faces "hallucination" in dermatological diagnosis, and due to the inherent complexity of dermatological conditions, existing tools offer relatively limited support for user comprehension. We propose SkinGEN, a diagnosis-to-generation framework that leverages the stable diffusion (SD) method to generate reference demonstrations from diagnosis results provided by VLM, thereby enhancing the visual explainability for users. Through extensive experiments with Low-Rank Adaptation (LoRA), we identify optimal strategies for skin condition image generation. We conduct a user study with 32 participants evaluating both the system performance and explainability. Results demonstrate that SkinGEN significantly improves users' comprehension of VLM predictions and fosters increased trust in the diagnostic process. This work paves the way for more transparent and user-centric VLM applications in dermatology and beyond.
We present a versatile NeRF-based simulator for testing autonomous driving (AD) software systems, designed with a focus on sensor-realistic closed-loop evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios inspired by the European New Car Assessment Programme (Euro NCAP). Our evaluation reveals that, while state-of-the-art end-to-end planners excel in nominal driving scenarios in an open-loop setting, they exhibit critical flaws when navigating our safety-critical scenarios in a closed-loop setting. This highlights the need for advancements in the safety and real-world usability of end-to-end planners. By publicly releasing our simulator and scenarios as an easy-to-run evaluation suite, we invite the research community to explore, refine, and validate their AD models in controlled, yet highly configurable and challenging sensor-realistic environments. Code and instructions can be found at //github.com/atonderski/neuro-ncap
Unsupervised Representation Learning on graphs is gaining traction due to the increasing abundance of unlabelled network data and the compactness, richness, and usefulness of the representations generated. In this context, the need to consider fairness and bias constraints while generating the representations has been well-motivated and studied to some extent in prior works. One major limitation of most of the prior works in this setting is that they do not aim to address the bias generated due to connectivity patterns in the graphs, such as varied node centrality, which leads to a disproportionate performance across nodes. In our work, we aim to address this issue of mitigating bias due to inherent graph structure in an unsupervised setting. To this end, we propose CAFIN, a centrality-aware fairness-inducing framework that leverages the structural information of graphs to tune the representations generated by existing frameworks. We deploy it on GraphSAGE (a popular framework in this domain) and showcase its efficacy on two downstream tasks - Node Classification and Link Prediction. Empirically, CAFIN consistently reduces the performance disparity across popular datasets (varying from 18 to 80% reduction in performance disparity) from various domains while incurring only a minimal cost of fairness.
The recent advancement of spatial transcriptomics (ST) allows to characterize spatial gene expression within tissue for discovery research. However, current ST platforms suffer from low resolution, hindering in-depth understanding of spatial gene expression. Super-resolution approaches promise to enhance ST maps by integrating histology images with gene expressions of profiled tissue spots. However, current super-resolution methods are limited by restoration uncertainty and mode collapse. Although diffusion models have shown promise in capturing complex interactions between multi-modal conditions, it remains a challenge to integrate histology images and gene expression for super-resolved ST maps. This paper proposes a cross-modal conditional diffusion model for super-resolving ST maps with the guidance of histology images. Specifically, we design a multi-modal disentangling network with cross-modal adaptive modulation to utilize complementary information from histology images and spatial gene expression. Moreover, we propose a dynamic cross-attention modelling strategy to extract hierarchical cell-to-tissue information from histology images. Lastly, we propose a co-expression-based gene-correlation graph network to model the co-expression relationship of multiple genes. Experiments show that our method outperforms other state-of-the-art methods in ST super-resolution on three public datasets.
Audiovisual segmentation (AVS) is a challenging task that aims to segment visual objects in videos according to their associated acoustic cues. With multiple sound sources and background disturbances involved, establishing robust correspondences between audio and visual contents poses unique challenges due to (1) complex entanglement across sound sources and (2) frequent changes in the occurrence of distinct sound events. Assuming sound events occur independently, the multi-source semantic space can be represented as the Cartesian product of single-source sub-spaces. We are motivated to decompose the multi-source audio semantics into single-source semantics for more effective interactions with visual content. We propose a semantic decomposition method based on product quantization, where the multi-source semantics can be decomposed and represented by several disentangled and noise-suppressed single-source semantics. Furthermore, we introduce a global-to-local quantization mechanism, which distills knowledge from stable global (clip-level) features into local (frame-level) ones, to handle frequent changes in audio semantics. Extensive experiments demonstrate that our semantically decomposed audio representation significantly improves AVS performance, e.g., +21.2% mIoU on the challenging AVS-Semantic benchmark with ResNet50 backbone. //github.com/lxa9867/QSD.
Vision-Language Pre-training (VLP) models like CLIP have achieved remarkable success in computer vision and particularly demonstrated superior robustness to distribution shifts of 2D images. However, their robustness under 3D viewpoint variations is still limited, which can hinder the development for real-world applications. This paper successfully addresses this concern while keeping VLPs' original performance by breaking through two primary obstacles: 1) the scarcity of training data and 2) the suboptimal fine-tuning paradigms. To combat data scarcity, we build the Multi-View Caption (MVCap) dataset -- a comprehensive collection of over four million multi-view image-text pairs across more than 100K objects, providing more potential for VLP models to develop generalizable viewpoint-invariant representations. To address the limitations of existing paradigms in performance trade-offs and training efficiency, we design a novel fine-tuning framework named Omniview-Tuning (OVT). Specifically, OVT introduces a Cross-Viewpoint Alignment objective through a minimax-like optimization strategy, which effectively aligns representations of identical objects from diverse viewpoints without causing overfitting. Additionally, OVT fine-tunes VLP models in a parameter-efficient manner, leading to minimal computational cost. Extensive experiments on various VLP models with different architectures validate that OVT significantly improves the models' resilience to viewpoint shifts and keeps the original performance, establishing a pioneering standard for boosting the viewpoint invariance of VLP models.
The unrolling method has been investigated for learning variational models in X-ray computed tomography. However, it has been observed that directly unrolling the regularization model through gradient descent does not produce satisfactory results. In this paper, we present a novel deep learning-based CT reconstruction model, where the low-resolution image is introduced to obtain an effective regularization term for improving the network`s robustness. Our approach involves constructing the backbone network architecture by algorithm unrolling that is realized using the deep equilibrium architecture. We theoretically discuss the convergence of the proposed low-resolution prior equilibrium model and provide the conditions to guarantee convergence. Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end low-resolution prior equilibrium model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
The potential of automatic task-solving through Large Language Model (LLM)-based multi-agent collaboration has recently garnered widespread attention from both the research community and industry. While utilizing natural language to coordinate multiple agents presents a promising avenue for democratizing agent technology for general users, designing coordination strategies remains challenging with existing coordination frameworks. This difficulty stems from the inherent ambiguity of natural language for specifying the collaboration process and the significant cognitive effort required to extract crucial information (e.g. agent relationship, task dependency, result correspondence) from a vast amount of text-form content during exploration. In this work, we present a visual exploration framework to facilitate the design of coordination strategies in multi-agent collaboration. We first establish a structured representation for LLM-based multi-agent coordination strategy to regularize the ambiguity of natural language. Based on this structure, we devise a three-stage generation method that leverages LLMs to convert a user's general goal into an executable initial coordination strategy. Users can further intervene at any stage of the generation process, utilizing LLMs and a set of interactions to explore alternative strategies. Whenever a satisfactory strategy is identified, users can commence the collaboration and examine the visually enhanced execution result. We develop AgentCoord, a prototype interactive system, and conduct a formal user study to demonstrate the feasibility and effectiveness of our approach.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.