亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To build a robust secure solution for smart city IOT network from any Cyber attacks using Artificial Intelligence. In Smart City IOT network, data collected from different log collectors or direct sources from cloud or edge should harness the potential of AI. The smart city command and control center team will leverage these models and deploy it in different city IOT network to help on intrusion prediction, network packet surge, potential botnet attacks from external network. Some of the vital use cases considered based on the users of command-and-control center

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網(wang)絡會議。 Publisher:IFIP。 SIT:

The use of rehabilitation robotics in clinical applications gains increasing importance, due to therapeutic benefits and the ability to alleviate labor-intensive works. However, their practical utility is dependent on the deployment of appropriate control algorithms, which adapt the level of task-assistance according to each individual patient's need. Generally, the required personalization is achieved through manual tuning by clinicians, which is cumbersome and error-prone. In this work we propose a novel online learning control architecture, which is able to personalize the control force at run time to each individual user. To this end, we deploy Gaussian process-based online learning with previously unseen prediction and update rates. Finally, we evaluate our method in an experimental user study, where the learning controller is shown to provide personalized control, while also obtaining safe interaction forces.

In this study, the creation of a database consisting of images obtained as a result of deformation in the images recorded by these cameras by injecting errors into the robot camera nodes and the alternative uses of this database are explained. The study is based on an existing camera fault injection software that injects faults into the cameras of the ROKOS robot arms while the system is running and collects the normal and faulty images recorded during this injection. The database obtained in the study is a source for detecting anomalies that may occur in robotic systems. The ROKOS system has been developed on the inspection of the parts in a bus body-in-white with the help of the cameras on the ROKOS robot arms, right and left. The simulation-based robot verification testing tool (SRVT) system is a system that has emerged by simulating these robots and the chassis in the Gazebo environment, performing and implementing the trajectory planning with the MoveIt planner, and integrating the ROS Smach structure and mission communication. This system is being developed within the scope of the VALU3S project to create a V&V system in the robotics field. Within the scope of this study, a database of 10000 images was created, consisting of 5000 normal and 5000 faulty images. Faulty pictures were obtained by injecting seven different image fault types, including erosion, dilusion, opening, closing, gradient, motion-blur and partial loss, at different times when the robot was in operation. This database consists of images taken by the ROKOS system from the vehicle during a bus chassis inspection mission.

With the advent of the Internet of Things (IoT), e-health has become one of the main topics of research. Due to the sensitivity of patient information, patient privacy seems challenging. Nowadays, patient data is usually stored in the cloud in healthcare programs, making it difficult for users to have enough control over their data. The recent increment in announced cases of security and surveillance breaches compromising patients' privacy call into question the conventional model, in which third-parties gather and control immense amounts of patients' Healthcare data. In this work, we try to resolve the issues mentioned above by using blockchain technology. We propose a blockchain-based protocol suitable for e-health applications that does not require trust in a third party and provides an efficient privacy-preserving access control mechanism. Transactions in our proposed system, unlike Bitcoin, are not entirely financial, and we do not use conventional methods for consensus operations in blockchain like Proof of Work (PoW). It is not suitable for IoT applications because IoT devices have resources-constraints. Usage of appropriate consensus method helps us to increase network security and efficiency, as well as reducing network cost, i.e., bandwidth and processor usage. Finally, we provide security and privacy analysis of our proposed protocol.

Millions of battery-powered sensors deployed for monitoring purposes in a multitude of scenarios, e.g., agriculture, smart cities, industry, etc., require energy-efficient solutions to prolong their lifetime. When these sensors observe a phenomenon distributed in space and evolving in time, it is expected that collected observations will be correlated in time and space. In this paper, we propose a Deep Reinforcement Learning (DRL) based scheduling mechanism capable of taking advantage of correlated information. We design our solution using the Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates, to ensure accurate collection of observations, while simultaneously considering the energy available. To evaluate our scheduling mechanism, we use multiple datasets containing environmental observations obtained in multiple real deployments. The real observations enable us to model the environment with which the mechanism interacts as realistically as possible. We show that our solution can significantly extend the sensors' lifetime. We compare our mechanism to an idealized, all-knowing scheduler to demonstrate that its performance is near-optimal. Additionally, we highlight the unique feature of our design, energy-awareness, by displaying the impact of sensors' energy levels on the frequency of updates.

Internet-of-things (IoT) devices are vulnerable to malicious operations by attackers, which can cause physical and economic harm to users; therefore, we previously proposed a sequence-based method that modeled user behavior as sequences of in-home events and a base home state to detect anomalous operations. However, that method modeled users' home states based on the time of day; hence, attackers could exploit the system to maximize attack opportunities. Therefore, we then proposed an estimation-based detection method that estimated the home state using not only the time of day but also the observable values of home IoT sensors and devices. However, it ignored short-term operational behaviors. Consequently, in the present work, we propose a behavior-modeling method that combines home state estimation and event sequences of IoT devices within the home to enable a detailed understanding of long- and short-term user behavior. We compared the proposed model to our previous methods using data collected from real homes. Compared with the estimation-based method, the proposed method achieved a 15.4% higher detection ratio with fewer than 10% misdetections. Compared with the sequence-based method, the proposed method achieved a 46.0% higher detection ratio with fewer than 10% misdetections.

Recently, many innovations have been experienced in healthcare by rapidly growing Internet-of-Things (IoT) technology that provides significant developments and facilities in the health sector and improves daily human life. The IoT bridges people, information technology and speed up shopping. For these reasons, IoT technology has started to be used on a large scale. Thanks to the use of IoT technology in health services, chronic disease monitoring, health monitoring, rapid intervention, early diagnosis and treatment, etc. facilitates the delivery of health services. However, the data transferred to the digital environment pose a threat of privacy leakage. Unauthorized persons have used them, and there have been malicious attacks on the health and privacy of individuals. In this study, it is aimed to propose a model to handle the privacy problems based on federated learning. Besides, we apply secure multi party computation. Our proposed model presents an extensive privacy and data analysis and achieve high performance.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Thus, deep RL opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This manuscript provides an introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. We assume the reader is familiar with basic machine learning concepts.

Smart services are an important element of the smart cities and the Internet of Things (IoT) ecosystems where the intelligence behind the services is obtained and improved through the sensory data. Providing a large amount of training data is not always feasible; therefore, we need to consider alternative ways that incorporate unlabeled data as well. In recent years, Deep reinforcement learning (DRL) has gained great success in several application domains. It is an applicable method for IoT and smart city scenarios where auto-generated data can be partially labeled by users' feedback for training purposes. In this paper, we propose a semi-supervised deep reinforcement learning model that fits smart city applications as it consumes both labeled and unlabeled data to improve the performance and accuracy of the learning agent. The model utilizes Variational Autoencoders (VAE) as the inference engine for generalizing optimal policies. To the best of our knowledge, the proposed model is the first investigation that extends deep reinforcement learning to the semi-supervised paradigm. As a case study of smart city applications, we focus on smart buildings and apply the proposed model to the problem of indoor localization based on BLE signal strength. Indoor localization is the main component of smart city services since people spend significant time in indoor environments. Our model learns the best action policies that lead to a close estimation of the target locations with an improvement of 23% in terms of distance to the target and at least 67% more received rewards compared to the supervised DRL model.

The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.

北京阿比特科技有限公司