亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate trade-offs in static and dynamic evaluation of hierarchical queries with arbitrary free variables. In the static setting, the trade-off is between the time to partially compute the query result and the delay needed to enumerate its tuples. In the dynamic setting, we additionally consider the time needed to update the query result under single-tuple inserts or deletes to the database. Our approach observes the degree of values in the database and uses different computation and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the latter it partially computes the result, while for the former it computes enough information to allow for on-the-fly enumeration. We define the preprocessing time, the update time, and the enumeration delay as functions of the light/heavy threshold. By appropriately choosing this threshold, our approach recovers a number of prior results when restricted to hierarchical queries. We show that for a restricted class of hierarchical queries, our approach achieves worst-case optimal update time and enumeration delay conditioned on the Online Matrix-Vector Multiplication Conjecture.

相關內容

We present new results for nonparametric identification of causal effects using noisy proxies for unobserved confounders. Our approach builds on the results of \citet{Hu2008} who tackle the problem of general measurement error. We call this the `triple proxy' approach because it requires three proxies that are jointly independent conditional on unobservables. We consider three different choices for the third proxy: it may be an outcome, a vector of treatments, or a collection of auxiliary variables. We compare to an alternative identification strategy introduced by \citet{Miao2018a} in which causal effects are identified using two conditionally independent proxies. We refer to this as the `double proxy' approach. The triple proxy approach identifies objects that are not identified by the double proxy approach, including some that capture the variation in average treatment effects between strata of the unobservables. Moreover, the conditional independence assumptions in the double and triple proxy approaches are non-nested.

The growing complexity of decision-making in public health and health care has motivated an increasing use of mathematical modeling. An important line of health modeling is based on stock & flow diagrams. Such modeling elevates transparency across the interdisciplinary teams responsible for most impactful models, but existing tools suffer from a number of shortcomings when used at scale. Recent research has sought to address such limitations by establishing a categorical foundation for stock & flow modeling, including the capacity to compose a pair of models through identification of common stocks and sum variables. This work supplements such efforts by contributing two new forms of composition for stock & flow diagrams. We first describe a hierarchical means of diagram composition, in which a single existing stock is replaced by a diagram featuring compatible flow structure. Our composition method offers extra flexibility by allowing a single flow in the stock being replaced to split into several flows totalling to the same overall flow rate. Secondly, to address the common need of docking a stock & flow diagram with another "upstream" diagram depicting antecedent factors, we contribute a composition approach that allows a flow out of an upstream stock in one diagram to be connected to a downstream stock in another diagram. Both of these approaches are enabled by performing colimit decomposition of stock & flow diagrams into single-stock corollas and unit flows.

Courcelle's theorem and its adaptations to cliquewidth have shaped the field of exact parameterized algorithms and are widely considered the archetype of algorithmic meta-theorems. In the past decade, there has been growing interest in developing parameterized approximation algorithms for problems which are not captured by Courcelle's theorem and, in particular, are considered not fixed-parameter tractable under the associated widths. We develop a generalization of Courcelle's theorem that yields efficient approximation schemes for any problem that can be captured by an expanded logic we call Blocked CMSO, capable of making logical statements about the sizes of set variables via so-called weight comparisons. The logic controls weight comparisons via the quantifier-alternation depth of the involved variables, allowing full comparisons for zero-alternation variables and limited comparisons for one-alternation variables. We show that the developed framework threads the very needle of tractability: on one hand it can describe a broad range of approximable problems, while on the other hand we show that the restrictions of our logic cannot be relaxed under well-established complexity assumptions. The running time of our approximation scheme is polynomial in $1/\varepsilon$, allowing us to fully interpolate between faster approximate algorithms and slower exact algorithms. This provides a unified framework to explain the tractability landscape of graph problems parameterized by treewidth and cliquewidth, as well as classical non-graph problems such as Subset Sum and Knapsack.

Multi-scale design has been considered in recent image super-resolution (SR) works to explore the hierarchical feature information. Existing multi-scale networks aim to build elaborate blocks or progressive architecture for restoration. In general, larger scale features concentrate more on structural and high-level information, while smaller scale features contain plentiful details and textured information. In this point of view, information from larger scale features can be derived from smaller ones. Based on the observation, in this paper, we build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR. Specially, we consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information. SMB is designed in a recursive way based on the linearity of convolution with restricted parameters. Besides the sequential hierarchical learning, we also investigate the correlations among the feature maps and devise a distribution transformation block (DTB). Different from attention-based methods, DTB regards the transformation in a normalization manner, and jointly considers the spatial and channel-wise correlations with scaling and bias factors. Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods with near 34\% parameters and 50\% MACs off when scaling factor is $\times4$. To boost the performance without further training, the extension model SHSR$^+$ with self-ensemble achieves competitive performance than larger networks with near 92\% parameters and 42\% MACs off with scaling factor $\times4$.

Empirical likelihood enables a nonparametric, likelihood-driven style of inference without restrictive assumptions routinely made in parametric models. We develop a framework for applying empirical likelihood to the analysis of experimental designs, addressing issues that arise from blocking and multiple hypothesis testing. In addition to popular designs such as balanced incomplete block designs, our approach allows for highly unbalanced, incomplete block designs. We derive an asymptotic multivariate chi-square distribution for a set of empirical likelihood test statistics and propose two single-step multiple testing procedures: asymptotic Monte Carlo and nonparametric bootstrap. Both procedures asymptotically control the generalised family-wise error rate and efficiently construct simultaneous confidence intervals for comparisons of interest without explicitly considering the underlying covariance structure. A simulation study demonstrates that the performance of the procedures is robust to violations of standard assumptions of linear mixed models. We also present an application to experiments on a pesticide.

Current studies on adversarial robustness mainly focus on aggregating local robustness results from a set of data samples to evaluate and rank different models. However, the local statistics may not well represent the true global robustness of the underlying unknown data distribution. To address this challenge, this paper makes the first attempt to present a new framework, called GREAT Score , for global robustness evaluation of adversarial perturbation using generative models. Formally, GREAT Score carries the physical meaning of a global statistic capturing a mean certified attack-proof perturbation level over all samples drawn from a generative model. For finite-sample evaluation, we also derive a probabilistic guarantee on the sample complexity and the difference between the sample mean and the true mean. GREAT Score has several advantages: (1) Robustness evaluations using GREAT Score are efficient and scalable to large models, by sparing the need of running adversarial attacks. In particular, we show high correlation and significantly reduced computation cost of GREAT Score when compared to the attack-based model ranking on RobustBench (Croce,et. al. 2021). (2) The use of generative models facilitates the approximation of the unknown data distribution. In our ablation study with different generative adversarial networks (GANs), we observe consistency between global robustness evaluation and the quality of GANs. (3) GREAT Score can be used for remote auditing of privacy-sensitive black-box models, as demonstrated by our robustness evaluation on several online facial recognition services.

Prototyping robotic systems is a time consuming process. Computer aided design, however, might speed up the process significantly. Quality-diversity evolutionary approaches optimise for novelty as well as performance, and can be used to generate a repertoire of diverse designs. This design repertoire could be used as a tool to guide a designer and kick-start the rapid prototyping process. This paper explores this idea in the context of mechanical linkage based robots. These robots can be a good test-bed for rapid prototyping, as they can be modified quickly for swift iterations in design. We compare three evolutionary algorithms for optimising 2D mechanical linkages: 1) a standard evolutionary algorithm, 2) the multi-objective algorithm NSGA-II, and 3) the quality-diversity algorithm MAP-Elites. Some of the found linkages are then realized on a physical hexapod robot through a prototyping process, and tested on two different floors. We find that all the tested approaches, except the standard evolutionary algorithm, are capable of finding mechanical linkages that creates a path similar to a specified desired path. However, the quality-diversity approaches that had the length of the linkage as a behaviour descriptor were the most useful when prototyping. This was due to the quality-diversity approaches having a larger variety of similar designs to choose from, and because the search could be constrained by the behaviour descriptors to make linkages that were viable for construction on our hexapod platform.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司