Given univariate random variables $Y_1, \ldots, Y_n$ with the $\text{Uniform}(\theta_0 - 1, \theta_0 + 1)$ distribution, the sample midrange $\frac{Y_{(n)}+Y_{(1)}}{2}$ is the MLE for $\theta_0$ and estimates $\theta_0$ with error of order $1/n$, which is much smaller compared with the $1/\sqrt{n}$ error rate of the usual sample mean estimator. However, the sample midrange performs poorly when the data has say the Gaussian $N(\theta_0, 1)$ distribution, with an error rate of $1/\sqrt{\log n}$. In this paper, we propose an estimator of the location $\theta_0$ with a rate of convergence that can, in many settings, adapt to the underlying distribution which we assume to be symmetric around $\theta_0$ but is otherwise unknown. When the underlying distribution is compactly supported, we show that our estimator attains a rate of convergence of $n^{-\frac{1}{\alpha}}$ up to polylog factors, where the rate parameter $\alpha$ can take on any value in $(0, 2]$ and depends on the moments of the underlying distribution. Our estimator is formed by the $\ell^\gamma$-center of the data, for a $\gamma\geq2$ chosen in a data-driven way -- by minimizing a criterion motivated by the asymptotic variance. Our approach can be directly applied to the regression setting where $\theta_0$ is a function of observed features and motivates the use of $\ell^\gamma$ loss function for $\gamma > 2$ in certain settings.
We couple the L1 discretization of the Caputo fractional derivative in time with the Galerkin scheme to devise a linear numerical method for the semilinear subdiffusion equation. Two important points that we make are: nonsmooth initial data and time-dependent diffusion coefficient. We prove the stability and convergence of the method under weak assumptions concerning regularity of the diffusivity. We find optimal pointwise in space and global in time errors, which are verified with several numerical experiments.
The elliptic curve discrete logarithm problem is of fundamental importance in public-key cryptography. It is in use for a long time. Moreover, it is an interesting challenge in computational mathematics. Its solution is supposed to provide interesting research directions. In this paper, we explore ways to solve the elliptic curve discrete logarithm problem. Our results are mostly computational. However, it seems, the methods that we develop and directions that we pursue can provide a potent attack on this problem. This work follows our earlier work, where we tried to solve this problem by finding a zero minor in a matrix over the same finite field on which the elliptic curve is defined. This paper is self-contained.
In this work, we develop a numerical method to study the error estimates of the $\alpha$-stable central limit theorem under sublinear expectation with $\alpha \in(0,2)$, whose limit distribution can be characterized by a fully nonlinear integro-differential equation (PIDE). Based on the sequence of independent random variables, we propose a discrete approximation scheme for the fully nonlinear PIDE. With the help of the nonlinear stochastic analysis techniques and numerical analysis tools, we establish the error bounds for the discrete approximation scheme, which in turn provides a general error bound for the robust $\alpha$-stable central limit theorem, including the integrable case $\alpha \in(1,2)$ as well as the non-integrable case $\alpha \in(0,1]$. Finally, we provide some concrete examples to illustrate our main results and derive the precise convergence rates.
We consider Gibbs distributions, which are families of probability distributions over a discrete space $\Omega$ with probability mass function of the form $\mu^\Omega_\beta(\omega) \propto e^{\beta H(\omega)}$ for $\beta$ in an interval $[\beta_{\min}, \beta_{\max}]$ and $H( \omega ) \in \{0 \} \cup [1, n]$. The partition function is the normalization factor $Z(\beta)=\sum_{\omega \in\Omega}e^{\beta H(\omega)}$. Two important parameters of these distributions are the log partition ratio $q = \log \tfrac{Z(\beta_{\max})}{Z(\beta_{\min})}$ and the counts $c_x = |H^{-1}(x)|$. These are correlated with system parameters in a number of physical applications and sampling algorithms. Our first main result is to estimate the counts $c_x$ using roughly $\tilde O( \frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and $\tilde O( \frac{n^2}{\varepsilon^2} )$ samples for integer-valued distributions (ignoring some second-order terms and parameters), and we show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs, independent sets, and perfect matchings. As a key subroutine, we also develop algorithms to compute the partition function $Z$ using $\tilde O(\frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and using $\tilde O(\frac{n^2}{\varepsilon^2})$ samples for integer-valued distributions.
The dichromatic number $\vec{\chi}(D)$ of a digraph $D$ is the least integer $k$ for which $D$ has a coloring with $k$ colors such that there is no monochromatic directed cycle in $D$. The digraphs considered here are finite and may have antiparallel arcs, but no parallel arcs. A digraph $D$ is called $k$-critical if each proper subdigraph $D'$ of $D$ satisfies $\vec{\chi}(D')<\vec{\chi}(D)=k$. For integers $k$ and $n$, let $\overrightarrow{\mathrm{ext}}(k,n)$ denote the minimum number of arcs possible in a $k$-critical digraph of order $n$. It is easy to show that $\overrightarrow{\mathrm{ext}}(2,n)=n$ for all $n\geq 2$, and $\overrightarrow{\mathrm{ext}}(3,n)\geq 2n$ for all possible $n$, where equality holds if and only if $n$ is odd and $n\geq 3$. As a main result we prove that if $n, k$ and $p$ are integers with $n=k+p$ and $2\leq p \leq k-1$, then $\overrightarrow{\mathrm{ext}}(k,n)=2({\binom{n}{2}} - (p^2+1))$, and we give an exact characterisation of $k$-critical digraphs for which equality holds. This generalizes a result about critical graphs obtained in 1963 by Tibor Gallai.
The property that the velocity $\boldsymbol{u}$ belongs to $L^\infty(0,T;L^2(\Omega)^d)$ is an essential requirement in the definition of energy solutions of models for incompressible fluids. It is, therefore, highly desirable that the solutions produced by discretisation methods are uniformly stable in the $L^\infty(0,T;L^2(\Omega)^d)$-norm. In this work, we establish that this is indeed the case for Discontinuous Galerkin (DG) discretisations (in time and space) of non-Newtonian models with $p$-structure, assuming that $p\geq \frac{3d+2}{d+2}$; the time discretisation is equivalent to the RadauIIA Implicit Runge-Kutta method. We also prove (weak) convergence of the numerical scheme to the weak solution of the system; this type of convergence result for schemes based on quadrature seems to be new. As an auxiliary result, we also derive Gagliardo-Nirenberg-type inequalities on DG spaces, which might be of independent interest.
Deep learning-based numerical schemes for solving high-dimensional backward stochastic differential equations (BSDEs) have recently raised plenty of scientific interest. While they enable numerical methods to approximate very high-dimensional BSDEs, their reliability has not been studied and is thus not understood. In this work, we study uncertainty quantification (UQ) for a class of deep learning-based BSDE schemes. More precisely, we review the sources of uncertainty involved in the schemes and numerically study the impact of different sources. Usually, the standard deviation (STD) of the approximate solutions obtained from multiple runs of the algorithm with different datasets is calculated to address the uncertainty. This approach is computationally quite expensive, especially for high-dimensional problems. Hence, we develop a UQ model that efficiently estimates the STD of the approximate solution using only a single run of the algorithm. The model also estimates the mean of the approximate solution, which can be leveraged to initialize the algorithm and improve the optimization process. Our numerical experiments show that the UQ model produces reliable estimates of the mean and STD of the approximate solution for the considered class of deep learning-based BSDE schemes. The estimated STD captures multiple sources of uncertainty, demonstrating its effectiveness in quantifying the uncertainty. Additionally, the model illustrates the improved performance when comparing different schemes based on the estimated STD values. Furthermore, it can identify hyperparameter values for which the scheme achieves good approximations.
We study the distributions of waiting times in variations of the negative binomial distribution of order $k$. One variation apply different enumeration scheme on the runs of successes. Another case considers binary trials for which the probability of ones is geometrically varying. We investigate the exact distribution of the waiting time for the $r$-th occurrence of success run of a specified length (non-overlapping, overlapping, at least, exactly, $\ell$-overlapping) in a $q$-sequence of binary trials. The main theorems are Type $1$, $2$, $3$ and $4$ $q$-negative binomial distribution of order $k$ and $q$-negative binomial distribution of order $k$ in the $\ell$-overlapping case. In the present work, we consider a sequence of independent binary zero and one trials with not necessarily identical distribution with the probability of ones varying according to a geometric rule. Exact formulae for the distributions obtained by means of enumerative combinatorics.
Given a sample of size $N$, it is often useful to select a subsample of smaller size $n<N$ to be used for statistical estimation or learning. Such a data selection step is useful to reduce the requirements of data labeling and the computational complexity of learning. We assume to be given $N$ unlabeled samples $\{{\boldsymbol x}_i\}_{i\le N}$, and to be given access to a `surrogate model' that can predict labels $y_i$ better than random guessing. Our goal is to select a subset of the samples, to be denoted by $\{{\boldsymbol x}_i\}_{i\in G}$, of size $|G|=n<N$. We then acquire labels for this set and we use them to train a model via regularized empirical risk minimization. By using a mixture of numerical experiments on real and synthetic data, and mathematical derivations under low- and high- dimensional asymptotics, we show that: $(i)$~Data selection can be very effective, in particular beating training on the full sample in some cases; $(ii)$~Certain popular choices in data selection methods (e.g. unbiased reweighted subsampling, or influence function-based subsampling) can be substantially suboptimal.
Let $G$ be an undirected graph, and $s,t$ distinguished vertices of $G$. A minimal $s,t$-separator is an inclusion-wise minimal vertex-set whose removal places $s$ and $t$ in distinct connected components. We present an algorithm for listing the minimal $s,t$-separators of a graph, whose cardinality is at most $k$, with FPT-delay, where the parameter depends only on $k$. This problem finds applications in various algorithms parameterized by treewidth, which include query evaluation in relational databases, probabilistic inference, and many more. We also present a simple algorithm that enumerates all of the (not necessarily minimal) $s,t$-separators of a graph in ranked order by size.