亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The question of whether $Y$ can be predicted based on $X$ often arises and while a well adjusted model may perform well on observed data, the risk of overfitting always exists, leading to poor generalization error on unseen data. This paper proposes a rigorous permutation test to assess the credibility of high $R^2$ values in regression models, which can also be applied to any measure of goodness of fit, without the need for sample splitting, by generating new pairings of $(X_i, Y_j)$ and providing an overall interpretation of the model's accuracy. It introduces a new formulation of the null hypothesis and justification for the test, which distinguishes it from previous literature. The theoretical findings are applied to both simulated data and sensor data of tennis serves in an experimental context. The simulation study underscores how the available information affects the test, showing that the less informative the predictors, the lower the probability of rejecting the null hypothesis, and emphasizing that detecting weaker dependence between variables requires a sufficient sample size.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 統計量 · Automator · MoDELS · INFORMS ·
2023 年 6 月 15 日

Automated variable selection is widely applied in statistical model development. Algorithms like forward, backward or stepwise selection are available in statistical software packages like R and SAS. Many researchers have criticized the use of these algorithms because the models resulting from automated selection algorithms are not based on theory and tend to be unstable. Furthermore, simulation studies have shown that they often select incorrect variables due to random effects which makes these model building strategies unreliable. In this article, a comprehensive stepwise selection algorithm tailored to logistic regression is proposed. It uses multiple criteria in variable selection instead of relying on one single measure only, like a $p$-value or Akaike's information criterion, which ensures robustness and soundness of the final outcome. The result of the selection process might not be unambiguous. It might select multiple models that could be considered as statistically equivalent. A simulation study demonstrates the superiority of the proposed variable selection method over available alternatives.

As AI technology develops, trust in AI agents is becoming more important for more AI applications in human society. Possible ways to improve the trust relationship include empathy, success-failure series, and capability (performance). Appropriate trust is less likely to cause deviations between actual and ideal performance. In this study, we focus on the agent's empathy and success-failure series to increase trust in AI agents. We experimentally examine the effect of empathy from agent to person on changes in trust over time. The experiment was conducted with a two-factor mixed design: empathy (available, not available) and success-failure series (phase 1 to phase 5). An analysis of variance (ANOVA) was conducted using data from 198 participants. The results showed an interaction between the empathy factor and the success-failure series factor, with trust in the agent stabilizing when empathy was present. This result supports our hypothesis. This study shows that designing AI agents to be empathetic is an important factor for trust and helps humans build appropriate trust relationships with AI agents.

Given tensors $\boldsymbol{\mathscr{A}}, \boldsymbol{\mathscr{B}}, \boldsymbol{\mathscr{C}}$ of size $m \times 1 \times n$, $m \times p \times 1$, and $1\times p \times n$, respectively, their Bhattacharya-Mesner (BM) product will result in a third order tensor of dimension $m \times p \times n$ and BM-rank of 1 (Mesner and Bhattacharya, 1990). Thus, if a third-order tensor can be written as a sum of a small number of such BM-rank 1 terms, this BM-decomposition (BMD) offers an implicitly compressed representation of the tensor. Therefore, in this paper, we give a generative model which illustrates that spatio-temporal video data can be expected to have low BM-rank. Then, we discuss non-uniqueness properties of the BMD and give an improved bound on the BM-rank of a third-order tensor. We present and study properties of an iterative algorithm for computing an approximate BMD, including convergence behavior and appropriate choices for starting guesses that allow for the decomposition of our spatial-temporal data into stationary and non-stationary components. Several numerical experiments show the impressive ability of our BMD algorithm to extract important temporal information from video data while simultaneously compressing the data. In particular, we compare our approach with dynamic mode decomposition (DMD): first, we show how the matrix-based DMD can be reinterpreted in tensor BMP form, then we explain why the low BM-rank decomposition can produce results with superior compression properties while simultaneously providing better separation of stationary and non-stationary features in the data. We conclude with a comparison of our low BM-rank decomposition to two other tensor decompositions, CP and the t-SVDM.

Quality Diversity (QD) has emerged as a powerful alternative optimization paradigm that aims at generating large and diverse collections of solutions, notably with its flagship algorithm MAP-ELITES (ME) which evolves solutions through mutations and crossovers. While very effective for some unstructured problems, early ME implementations relied exclusively on random search to evolve the population of solutions, rendering them notoriously sample-inefficient for high-dimensional problems, such as when evolving neural networks. Follow-up works considered exploiting gradient information to guide the search in order to address these shortcomings through techniques borrowed from either Black-Box Optimization (BBO) or Reinforcement Learning (RL). While mixing RL techniques with ME unlocked state-of-the-art performance for robotics control problems that require a good amount of exploration, it also plagued these ME variants with limitations common among RL algorithms that ME was free of, such as hyperparameter sensitivity, high stochasticity as well as training instability, including when the population size increases as some components are shared across the population in recent approaches. Furthermore, existing approaches mixing ME with RL tend to be tied to a specific RL algorithm, which effectively prevents their use on problems where the corresponding RL algorithm fails. To address these shortcomings, we introduce a flexible framework that allows the use of any RL algorithm and alleviates the aforementioned limitations by evolving populations of agents (whose definition include hyperparameters and all learnable parameters) instead of just policies. We demonstrate the benefits brought about by our framework through extensive numerical experiments on a number of robotics control problems, some of which with deceptive rewards, taken from the QD-RL literature.

We study the problem of finding incorrect property accesses in JavaScript where objects do not have a fixed layout, and properties (including methods) can be added, overwritten, and deleted freely throughout the lifetime of an object. Since referencing a non-existent property is not an error in JavaScript, accidental accesses to non-existent properties (caused, perhaps, by a typo or by a misunderstanding of API documentation) can go undetected without thorough testing, and may manifest far from the source of the problem. We propose a two-phase approach for detecting property access errors based on the observation that, in practice, most property accesses will be correct. First a large number of property access patterns is collected from an extensive corpus of real-world JavaScript code, and a statistical analysis is performed to identify anomalous usage patterns. Specific instances of these patterns may not be bugs (due, e.g., dynamic type checks), so a local data-flow analysis filters out instances of anomalous property accesses that are safe and leaves only those likely to be actual bugs. We experimentally validate our approach, showing that on a set of 100 concrete instances of anomalous property accesses, the approach achieves a precision of 82% with a recall of 90%, making it suitable for practical use. We also conducted an experiment to determine how effective the popular VSCode code completion feature is at suggesting object properties, and found that, while it never suggested an incorrect property (precision of 100%), it failed to suggest the correct property in 62 out of 80 cases (recall of 22.5%). This shows that developers cannot rely on VSCode's code completion alone to ensure that all property accesses are valid.

This paper develops an approximation to the (effective) $p$-resistance and applies it to multi-class clustering. Spectral methods based on the graph Laplacian and its generalization to the graph $p$-Laplacian have been a backbone of non-euclidean clustering techniques. The advantage of the $p$-Laplacian is that the parameter $p$ induces a controllable bias on cluster structure. The drawback of $p$-Laplacian eigenvector based methods is that the third and higher eigenvectors are difficult to compute. Thus, instead, we are motivated to use the $p$-resistance induced by the $p$-Laplacian for clustering. For $p$-resistance, small $p$ biases towards clusters with high internal connectivity while large $p$ biases towards clusters of small ``extent,'' that is a preference for smaller shortest-path distances between vertices in the cluster. However, the $p$-resistance is expensive to compute. We overcome this by developing an approximation to the $p$-resistance. We prove upper and lower bounds on this approximation and observe that it is exact when the graph is a tree. We also provide theoretical justification for the use of $p$-resistance for clustering. Finally, we provide experiments comparing our approximated $p$-resistance clustering to other $p$-Laplacian based methods.

The success of SGD in deep learning has been ascribed by prior works to the implicit bias induced by high learning rate or small batch size ("SGD noise"). While prior works that focused on offline learning (i.e., multiple-epoch training), we study the impact of SGD noise on online (i.e., single epoch) learning. Through an extensive empirical analysis of image and language data, we demonstrate that large learning rate and small batch size do not confer any implicit bias advantages in online learning. In contrast to offline learning, the benefits of SGD noise in online learning are strictly computational, facilitating larger or more cost-effective gradient steps. Our work suggests that SGD in the online regime can be construed as taking noisy steps along the "golden path" of the noiseless gradient flow algorithm. We provide evidence to support this hypothesis by conducting experiments that reduce SGD noise during training and by measuring the pointwise functional distance between models trained with varying SGD noise levels, but at equivalent loss values. Our findings challenge the prevailing understanding of SGD and offer novel insights into its role in online learning.

The bandits with knapsack (BwK) framework models online decision-making problems in which an agent makes a sequence of decisions subject to resource consumption constraints. The traditional model assumes that each action consumes a non-negative amount of resources and the process ends when the initial budgets are fully depleted. We study a natural generalization of the BwK framework which allows non-monotonic resource utilization, i.e., resources can be replenished by a positive amount. We propose a best-of-both-worlds primal-dual template that can handle any online learning problem with replenishment for which a suitable primal regret minimizer exists. In particular, we provide the first positive results for the case of adversarial inputs by showing that our framework guarantees a constant competitive ratio $\alpha$ when $B=\Omega(T)$ or when the possible per-round replenishment is a positive constant. Moreover, under a stochastic input model, our algorithm yields an instance-independent $\tilde{O}(T^{1/2})$ regret bound which complements existing instance-dependent bounds for the same setting. Finally, we provide applications of our framework to some economic problems of practical relevance.

Learning algorithms that divide the data into batches are prevalent in many machine-learning applications, typically offering useful trade-offs between computational efficiency and performance. In this paper, we examine the benefits of batch-partitioning through the lens of a minimum-norm overparameterized linear regression model with isotropic Gaussian features. We suggest a natural small-batch version of the minimum-norm estimator, and derive an upper bound on its quadratic risk, showing it is inversely proportional to the noise level as well as to the overparameterization ratio, for the optimal choice of batch size. In contrast to minimum-norm, our estimator admits a stable risk behavior that is monotonically increasing in the overparameterization ratio, eliminating both the blowup at the interpolation point and the double-descent phenomenon. Interestingly, we observe that this implicit regularization offered by the batch partition is partially explained by feature overlap between the batches. Our bound is derived via a novel combination of techniques, in particular normal approximation in the Wasserstein metric of noisy projections over random subspaces.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

北京阿比特科技有限公司