亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Offloading high-demanding applications to the edge provides better quality of experience (QoE) for users with limited hardware devices. However, to maintain a competitive QoE, infrastructure, and service providers must adapt to users' different mobility patterns, which can be challenging, especially for location-based services (LBS). Another issue that needs to be tackled is the increasing demand for user privacy protection. With less (accurate) information regarding user location, preferences, and usage patterns, forecasting the performance of offloading mechanisms becomes even more challenging. This work discusses the impacts of users' privacy and mobility when offloading to the edge. Different privacy and mobility scenarios are simulated and discussed to shed light on the trade-offs (e.g., privacy protection at the cost of increased latency) among privacy protection, mobility, and offloading performance.

相關內容

This report surveys advances in deep learning-based modeling techniques that address four different 3D indoor scene analysis tasks, as well as synthesis of 3D indoor scenes. We describe different kinds of representations for indoor scenes, various indoor scene datasets available for research in the aforementioned areas, and discuss notable works employing machine learning models for such scene modeling tasks based on these representations. Specifically, we focus on the analysis and synthesis of 3D indoor scenes. With respect to analysis, we focus on four basic scene understanding tasks -- 3D object detection, 3D scene segmentation, 3D scene reconstruction and 3D scene similarity. And for synthesis, we mainly discuss neural scene synthesis works, though also highlighting model-driven methods that allow for human-centric, progressive scene synthesis. We identify the challenges involved in modeling scenes for these tasks and the kind of machinery that needs to be developed to adapt to the data representation, and the task setting in general. For each of these tasks, we provide a comprehensive summary of the state-of-the-art works across different axes such as the choice of data representation, backbone, evaluation metric, input, output, etc., providing an organized review of the literature. Towards the end, we discuss some interesting research directions that have the potential to make a direct impact on the way users interact and engage with these virtual scene models, making them an integral part of the metaverse.

Reconfigurable intelligent surfaces (RISs) are expected to make future 6G networks more connected and resilient against node failures, due to their ability to introduce controllable phase-shifts onto impinging electromagnetic waves and impose link redundancy. Meanwhile, unmanned aerial vehicles (UAVs) are prone to failure due to limited energy, random failures, or targeted failures, which causes network disintegration that results in information delivery loss. In this paper, we show that the integration between UAVs and RISs for improving network connectivity is crucial. We utilize RISs to provide path diversity and alternative connectivity options for information flow from user equipments (UEs) to less critical UAVs by adding more links to the network, thereby making the network more resilient and connected. To that end, we first define the criticality of UAV nodes, which reflects the importance of some nodes over other nodes. We then employ the algebraic connectivity metric, which is adjusted by the reflected links of the RISs and their criticality weights, to formulate the problem of maximizing the network connectivity. Such problem is a computationally expensive combinatorial optimization. To tackle this problem, we propose a relaxation method such that the discrete scheduling constraint of the problem is relaxed and becomes continuous. Leveraging this, we propose two efficient solutions, namely semi-definite programming (SDP) optimization and perturbation heuristic, which both solve the problem in polynomial time. For the perturbation heuristic, we derive the lower and upper bounds of the algebraic connectivity obtained by adding new links to the network. Finally, we corroborate the effectiveness of the proposed solutions through extensive simulation experiments.

For vehicular metaverses, one of the ultimate user-centric goals is to optimize the immersive experience and Quality of Service (QoS) for users on board. Semantic Communication (SemCom) has been introduced as a revolutionary paradigm that significantly eases communication resource pressure for vehicular metaverse applications to achieve this goal. SemCom enables high-quality and ultra-efficient vehicular communication, even with explosively increasing data traffic among vehicles. In this article, we propose a hierarchical SemCom-enabled vehicular metaverses framework consisting of the global metaverse, local metaverses, SemCom module, and resource pool. The global and local metaverses are brand-new concepts from the metaverse's distribution standpoint. Considering the QoS of users, this article explores the potential security vulnerabilities of the proposed framework. To that purpose, this study highlights a specific security risk to the framework's SemCom module and offers a viable defense solution, so encouraging community researchers to focus more on vehicular metaverse security. Finally, we provide an overview of the open issues of secure SemCom in the vehicular metaverses, notably pointing out potential future research directions.

Parallel server systems in transportation, manufacturing, and computing heavily rely on dynamic routing using connected cyber components for computation and communication. Yet, these components remain vulnerable to random malfunctions and malicious attacks, motivating the need for fault-tolerant dynamic routing that are both traffic-stabilizing and cost-efficient. In this paper, we consider a parallel server system with dynamic routing subject to reliability and stability failures. For the reliability setting, we consider an infinite-horizon Markov decision process where the system operator strategically activates protection mechanism upon each job arrival based on traffic state observations. We prove an optimal deterministic threshold protecting policy exists based on dynamic programming recursion of the HJB equation. For the security setting, we extend the model to an infinite-horizon stochastic game where the attacker strategically manipulates routing assignment. We show that both players follow a threshold strategy at every Markov perfect equilibrium. For both failure settings, we also analyze the stability of the traffic queues under control. Finally, we develop approximate dynamic programming algorithms to compute the optimal/equilibrium policies, supplemented with numerical examples and experiments for validation and illustration.

As software becomes increasingly pervasive in critical domains like autonomous driving, new challenges arise, necessitating rethinking of system engineering approaches. The gradual takeover of all critical driving functions by autonomous driving adds to the complexity of certifying these systems. Namely, certification procedures do not fully keep pace with the dynamism and unpredictability of future autonomous systems, and they may not fully guarantee compliance with the requirements imposed on these systems. In this paper, we have identified several issues with the current certification strategies that could pose serious safety risks. As an example, we highlight the inadequate reflection of software changes in constantly evolving systems and the lack of support for systems' cooperation necessary for managing coordinated movements. Other shortcomings include the narrow focus of awarded certification, neglecting aspects such as the ethical behavior of autonomous software systems. The contribution of this paper is threefold. First, we analyze the existing international standards used in certification processes in relation to the requirements derived from dynamic software ecosystems and autonomous systems themselves, and identify their shortcomings. Second, we outline six suggestions for rethinking certification to foster comprehensive solutions to the identified problems. Third, a conceptual Multi-Layer Trust Governance Framework is introduced to establish a robust governance structure for autonomous ecosystems and associated processes, including envisioned future certification schemes. The framework comprises three layers, which together support safe and ethical operation of autonomous systems.

As the amount of textual data in various fields, including software development, continues to grow, there is a pressing demand for efficient and effective extraction and presentation of meaningful insights. This paper presents a unique approach to address this need, focusing on the complexities of interpreting Application Programming Interface (API) documentation. While official API documentation serves as a primary source of information for developers, it can often be extensive and lacks user-friendliness. In light of this, developers frequently resort to unofficial sources like Stack Overflow and GitHub. Our novel approach employs the strengths of BERTopic for topic modeling and Natural Language Processing (NLP) to automatically generate summaries of API documentation, thereby creating a more efficient method for developers to extract the information they need. The produced summaries and topics are evaluated based on their performance, coherence, and interoperability. The findings of this research contribute to the field of API documentation analysis by providing insights into recurring topics, identifying common issues, and generating potential solutions. By improving the accessibility and efficiency of API documentation comprehension, our work aims to enhance the software development process and empower developers with practical tools for navigating complex APIs.

Predicting the performance of highly configurable software systems is the foundation for performance testing and quality assurance. To that end, recent work has been relying on machine/deep learning to model software performance. However, a crucial yet unaddressed challenge is how to cater for the sparsity inherited from the configuration landscape: the influence of configuration options (features) and the distribution of data samples are highly sparse. In this paper, we propose an approach based on the concept of 'divide-and-learn', dubbed $DaL$. The basic idea is that, to handle sample sparsity, we divide the samples from the configuration landscape into distant divisions, for each of which we build a regularized Deep Neural Network as the local model to deal with the feature sparsity. A newly given configuration would then be assigned to the right model of division for the final prediction. Experiment results from eight real-world systems and five sets of training data reveal that, compared with the state-of-the-art approaches, $DaL$ performs no worse than the best counterpart on 33 out of 40 cases (within which 26 cases are significantly better) with up to $1.94\times$ improvement on accuracy; requires fewer samples to reach the same/better accuracy; and producing acceptable training overhead. Practically, $DaL$ also considerably improves different global models when using them as the underlying local models, which further strengthens its flexibility. To promote open science, all the data, code, and supplementary figures of this work can be accessed at our repository: //github.com/ideas-labo/DaL.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

北京阿比特科技有限公司