亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formulae (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and N\"urnberg (J. Comput. Phys., 222 (2007), pp.~441--467), we successfully develop high-order BGN/BDF$k$ schemes. The proposed BGN/BDF$k$ schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired $k$th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF$k$ schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.

相關內容

We combine the recent relaxation approach with multiderivative Runge-Kutta methods to preserve conservation or dissipation of entropy functionals for ordinary and partial differential equations. Relaxation methods are minor modifications of explicit and implicit schemes, requiring only the solution of a single scalar equation per time step in addition to the baseline scheme. We demonstrate the robustness of the resulting methods for a range of test problems including the 3D compressible Euler equations. In particular, we point out improved error growth rates for certain entropy-conservative problems including nonlinear dispersive wave equations.

We consider the fundamental task of optimising a real-valued function defined in a potentially high-dimensional Euclidean space, such as the loss function in many machine-learning tasks or the logarithm of the probability distribution in statistical inference. We use Riemannian geometry notions to redefine the optimisation problem of a function on the Euclidean space to a Riemannian manifold with a warped metric, and then find the function's optimum along this manifold. The warped metric chosen for the search domain induces a computational friendly metric-tensor for which optimal search directions associated with geodesic curves on the manifold becomes easier to compute. Performing optimization along geodesics is known to be generally infeasible, yet we show that in this specific manifold we can analytically derive Taylor approximations up to third-order. In general these approximations to the geodesic curve will not lie on the manifold, however we construct suitable retraction maps to pull them back onto the manifold. Therefore, we can efficiently optimize along the approximate geodesic curves. We cover the related theory, describe a practical optimization algorithm and empirically evaluate it on a collection of challenging optimisation benchmarks. Our proposed algorithm, using 3rd-order approximation of geodesics, tends to outperform standard Euclidean gradient-based counterparts in term of number of iterations until convergence.

Mendelian randomization uses genetic variants as instrumental variables to make causal inferences about the effects of modifiable risk factors on diseases from observational data. One of the major challenges in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the risk factor of interest, a setting known as many weak instruments. Many existing methods, such as the popular inverse-variance weighted (IVW) method, could be biased when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator, which is shown to be robust to many weak instruments, was recently proposed. However, this estimator still has non-ignorable bias when the effective sample size is small. In this paper, we propose a modified debiased IVW (mdIVW) estimator by multiplying a modification factor to the original dIVW estimator. After this simple correction, we show that the bias of the mdIVW estimator converges to zero at a faster rate than that of the dIVW estimator under some regularity conditions. Moreover, the mdIVW estimator has smaller variance than the dIVW estimator.We further extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the dIVW estimator through extensive simulation studies and real data analysis.

We propose a new Riemannian gradient descent method for computing spherical area-preserving mappings of topological spheres using a Riemannian retraction-based framework with theoretically guaranteed convergence. The objective function is based on the stretch energy functional, and the minimization is constrained on a power manifold of unit spheres embedded in 3-dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the accuracy and stability of the proposed framework. Comparisons with two existing state-of-the-art methods for computing area-preserving mappings demonstrate that our algorithm is both competitive and more efficient. Finally, we present a concrete application to the problem of landmark-aligned surface registration of two brain models.

Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) is studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having (space-time) variable coefficients. The proposed scheme is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. With the help of a discrete fractional Gr\"{o}nwall inequality, global almost optimal error estimates in $L^2$- and $H^1$-norms are derived for the problem with initial data $u_0 \in H_0^1(\Omega)\cap H^2(\Omega)$. The novelty of our approach is based on managing the interaction of the L1 approximation of the fractional derivative and the time discrete elliptic operator to derive the optimal estimate in $H^1$-norm directly. Furthermore, a super convergence result is established when the elliptic operator is self-adjoint with time and space varying coefficients, and as a consequence, an $L^\infty$ error estimate is obtained for 2D problems that too with the initial condition is in $ H_0^1(\Omega)\cap H^2(\Omega)$. All results proved in this paper are valid uniformly as $\alpha\longrightarrow 1^{-}$, where $\alpha$ is the order of the Caputo fractional derivative. Numerical experiments are presented to validate our theoretical findings.

Symplectic integrators are widely implemented numerical integrators for Hamiltonian mechanics, which preserve the Hamiltonian structure (symplecticity) of the system. Although the symplectic integrator does not conserve the energy of the system, it is well known that there exists a conserving modified Hamiltonian, called the shadow Hamiltonian. For the Nambu mechanics, which is one of the generalized Hamiltonian mechanics, we can also construct structure-preserving integrators by the same procedure used to construct the symplectic integrators. In the structure-preserving integrator, however, the existence of shadow Hamiltonians is non-trivial. This is because the Nambu mechanics is driven by multiple Hamiltonians and it is non-trivial whether the time evolution by the integrator can be cast into the Nambu mechanical time evolution driven by multiple shadow Hamiltonians. In the present paper we construct structure-preserving integrators for a simple Nambu mechanical system, and derive the shadow Hamiltonians in two ways. This is the first attempt to derive shadow Hamiltonians of structure-preserving integrators for Nambu mechanics. We show that the fundamental identity, which corresponds to the Jacobi identity in Hamiltonian mechanics, plays an important role to calculate the shadow Hamiltonians using the Baker-Campbell-Hausdorff formula. It turns out that the resulting shadow Hamiltonians have indefinite forms depending on how the fundamental identities are used. This is not a technical artifact, because the exact shadow Hamiltonians obtained independently have the same indefiniteness.

In this article, we propose a fully-discrete scheme for the numerical solution of a nonlinear time-fractional biharmonic problem. This problem is first converted into an equivalent system by introducing a new variable. Then spatial and temporal discretizations are done by the weighted $b$-spline method and $L2$-$1_\sigma$ approximation, respectively. The weighted $b$-spline method uses weighted $b$-splines on a tensor product grid as basis functions for the finite element space and by construction, it is a mesh-free method. This method combines the computational benefits of $b$-splines and standard mesh-based elements. We derive $\alpha$-robust \emph{a priori} bound and convergence estimate in the $L^2(\Omega)$ norm for the proposed scheme. Finally, we carry out few numerical experiments to support our theoretical findings.

Fourth-order variational inequalities are encountered in various scientific and engineering disciplines, including elliptic optimal control problems and plate obstacle problems. In this paper, we consider additive Schwarz methods for solving fourth-order variational inequalities. Based on a unified framework of various finite element methods for fourth-order variational inequalities, we develop one- and two-level additive Schwarz methods. We prove that the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. This proof relies on a new nonlinear positivity-preserving coarse interpolation operator, the construction of which was previously unknown. To the best of our knowledge, this analysis represents the first investigation into the scalability of the two-level additive Schwarz method for fourth-order variational inequalities. Our theoretical results are verified by numerical experiments.

This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.

Graph-based approximation methods are of growing interest in many areas, including transportation, biological and chemical networks, financial models, image processing, network flows, and more. In these applications, often a basis for the approximation space is not available analytically and must be computed. We propose perturbations of Lagrange bases on graphs, where the Lagrange functions come from a class of functions analogous to classical splines. The basis functions we consider have local support, with each basis function obtained by solving a small energy minimization problem related to a differential operator on the graph. We present $\ell_\infty$ error estimates between the local basis and the corresponding interpolatory Lagrange basis functions in cases where the underlying graph satisfies a mild assumption on the connections of vertices where the function is not known, and the theoretical bounds are examined further in numerical experiments. Included in our analysis is a mixed-norm inequality for positive definite matrices that is tighter than the general estimate $\|A\|_{\infty} \leq \sqrt{n} \|A\|_{2}$.

北京阿比特科技有限公司