亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this letter, we analyze the performance of mixed coherent and non-coherent transmissions approach, which can improve the performance of cell-free multiple-input multiple-output orthogonal frequency division multiplexing (CF mMIMO-OFDM) systems under asynchronous reception. To this end, we first obtain the achievable downlink sum-rate for the mixed coherent and non-coherent transmissions, and then provide a closed-form expression for the case with the maximum ratio precoding. Subsequently, an efficient clustering algorithm is proposed to group access points into different clusters with the same quantized phase shift in each cluster. Numerical results demonstrate that the mixed coherent and non-coherent transmissions can effectively improve the sum-rate of CF mMIMO-OFDM systems under asynchronous reception.

相關內容

In this paper, we propose HE-Drive: the first human-like-centric end-to-end autonomous driving system to generate trajectories that are both temporally consistent and comfortable. Recent studies have shown that imitation learning-based planners and learning-based trajectory scorers can effectively generate and select accuracy trajectories that closely mimic expert demonstrations. However, such trajectory planners and scorers face the dilemma of generating temporally inconsistent and uncomfortable trajectories. To solve the above problems, Our HE-Drive first extracts key 3D spatial representations through sparse perception, which then serves as conditional inputs for a Conditional Denoising Diffusion Probabilistic Models (DDPMs)-based motion planner to generate temporal consistency multi-modal trajectories. A Vision-Language Models (VLMs)-guided trajectory scorer subsequently selects the most comfortable trajectory from these candidates to control the vehicle, ensuring human-like end-to-end driving. Experiments show that HE-Drive not only achieves state-of-the-art performance (i.e., reduces the average collision rate by 71% than VAD) and efficiency (i.e., 1.9X faster than SparseDrive) on the challenging nuScenes and OpenScene datasets but also provides the most comfortable driving experience on real-world data.For more information, visit the project website: //jmwang0117.github.io/HE-Drive/.

In this paper, we present noise-domain non-orthogonal multiple access (ND-NOMA), an innovative communication scheme that utilizes the modulation of artificial noise mean and variance to convey information. Distinct from traditional methods such as power-domain non-orthogonal multiple access (PD-NOMA) that heavily relies on successive interference cancellation (SIC), ND-NOMA utilizes the noise domain, considerably reducing power consumption and system complexity. Inspired by noise modulation, ND-NOMA enhances energy efficiency and provides lower bit error probability (BEP), making it highly suitable for next-generation Internet-of-things (IoT) networks. Our theoretical analyses and computer simulations reveal that ND-NOMA can achieve exceptionally low bit error rates in both uplink and downlink scenarios, in the presence of Rician fading channels. The proposed multi-user system is supported by a minimum distance detector for mean detection and a threshold-based detector for variance detection, ensuring robust communication in low-power environments. By leveraging the inherent properties of noise, ND-NOMA offers a promising platform for long-term deployments of low-cost and low-complexity devices.

In this paper, we explore bounds on the expected risk when using deep neural networks for supervised classification from an information theoretic perspective. Firstly, we introduce model risk and fitting error, which are derived from further decomposing the empirical risk. Model risk represents the expected value of the loss under the model's predicted probabilities and is exclusively dependent on the model. Fitting error measures the disparity between the empirical risk and model risk. Then, we derive the upper bound on fitting error, which links the back-propagated gradient and the model's parameter count with the fitting error. Furthermore, we demonstrate that the generalization errors are bounded by the classification uncertainty, which is characterized by both the smoothness of the distribution and the sample size. Based on the bounds on fitting error and generalization, by utilizing the triangle inequality, we establish an upper bound on the expected risk. This bound is applied to provide theoretical explanations for overparameterization, non-convex optimization and flat minima in deep learning. Finally, empirical verification confirms a significant positive correlation between the derived theoretical bounds and the practical expected risk, thereby affirming the practical relevance of the theoretical findings.

In this paper, we consider the problem of automatically monitoring linearizability. Here, one observes an execution of a concurrent program that interacts with a concurrent object and determines if the execution witnesses the violation of linearizability with respect to the sequential specification of the underlying data structure of the concurrent object. This problem has been extensively studied in the past for read-write registers, and both tight upper and lower bounds have been proposed in this case. While this problem has also been studied for the case of other prominent data structures such as stacks and queues, we find that these results are either not extensive or in some cases incorrect. In this paper, we study the problem under the restriction where values inserted in the data types are distinct (in the execution observed). We then show that under such a restriction, the linearizability problem is solvable in polynomial time for these data types. Beyond theoretical soundness and completeness, the algorithms proposed are empirically proven to outperform all state-of-the-art linearizability monitors.

We introduce the Faetar Automatic Speech Recognition Benchmark, a benchmark corpus designed to push the limits of current approaches to low-resource speech recognition. Faetar, a Franco-Proven\c{c}al variety spoken primarily in Italy, has no standard orthography, has virtually no existing textual or speech resources other than what is included in the benchmark, and is quite different from other forms of Franco-Proven\c{c}al. The corpus comes from field recordings, most of which are noisy, for which only 5 hrs have matching transcriptions, and for which forced alignment is of variable quality. The corpus contains an additional 20 hrs of unlabelled speech. We report baseline results from state-of-the-art multilingual speech foundation models with a best phone error rate of 30.4%, using a pipeline that continues pre-training on the foundation model using the unlabelled set.

In this paper, we propose to use Sinc interpolation in the context of Kolmogorov-Arnold Networks, neural networks with learnable activation functions, which recently gained attention as alternatives to multilayer perceptron. Many different function representations have already been tried, but we show that Sinc interpolation proposes a viable alternative, since it is known in numerical analysis to represent well both smooth functions and functions with singularities. This is important not only for function approximation but also for the solutions of partial differential equations with physics-informed neural networks. Through a series of experiments, we show that SincKANs provide better results in almost all of the examples we have considered.

We depend on our own memory to encode, store, and retrieve our experiences. However, memory lapses can occur. One promising avenue for achieving memory augmentation is through the use of augmented reality head-mounted displays to capture and preserve egocentric videos, a practice commonly referred to as lifelogging. However, a significant challenge arises from the sheer volume of video data generated through lifelogging, as the current technology lacks the capability to encode and store such large amounts of data efficiently. Further, retrieving specific information from extensive video archives requires substantial computational power, further complicating the task of quickly accessing desired content. To address these challenges, we propose a memory augmentation agent that involves leveraging natural language encoding for video data and storing them in a vector database. This approach harnesses the power of large vision language models to perform the language encoding process. Additionally, we propose using large language models to facilitate natural language querying. Our agent underwent extensive evaluation using the QA-Ego4D dataset and achieved state-of-the-art results with a BLEU score of 8.3, outperforming conventional machine learning models that scored between 3.4 and 5.8. Additionally, we conducted a user study in which participants interacted with the human memory augmentation agent through episodic memory and open-ended questions. The results of this study show that the agent results in significantly better recall performance on episodic memory tasks compared to human participants. The results also highlight the agent's practical applicability and user acceptance.

Proteins, as essential biomolecules, play a central role in biological processes, including metabolic reactions and DNA replication. Accurate prediction of their properties and functions is crucial in biological applications. Recent development of protein language models (pLMs) with supervised fine tuning provides a promising solution to this problem. However, the fine-tuned model is tailored for particular downstream prediction task, and achieving general-purpose protein understanding remains a challenge. In this paper, we introduce Structure-Enhanced Protein Instruction Tuning (SEPIT) framework to bridge this gap. Our approach integrates a noval structure-aware module into pLMs to inform them with structural knowledge, and then connects these enhanced pLMs to large language models (LLMs) to generate understanding of proteins. In this framework, we propose a novel two-stage instruction tuning pipeline that first establishes a basic understanding of proteins through caption-based instructions and then refines this understanding using a mixture of experts (MoEs) to learn more complex properties and functional information with the same amount of activated parameters. Moreover, we construct the largest and most comprehensive protein instruction dataset to date, which allows us to train and evaluate the general-purpose protein understanding model. Extensive experimental results on open-ended generation and closed-set answer tasks demonstrate the superior performance of SEPIT over both closed-source general LLMs and open-source LLMs trained with protein knowledge.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.

北京阿比特科技有限公司