亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The modeling of emergent swarm intelligence constitutes a major challenge and it has been tacked in a number of different ways. However, existing approaches fail to capture the nature of swarm intelligence and they are either too abstract for practical application or not generic enough to describe the various types of emergence phenomena. In this paper, a contradiction-centric model for swarm intelligence is proposed, in which individuals determine their behaviors based on their internal contradictions whilst they associate and interact to update their contradictions. The model hypothesizes that 1) the emergence of swarm intelligence is rooted in the development of individuals' internal contradictions and the interactions taking place between individuals and the environment, and 2) swarm intelligence is essentially a combinative reflection of the configurations of individuals' internal contradictions and the distributions of these contradictions across individuals. The model is formally described and five swarm intelligence systems are studied to illustrate its broad applicability. The studies confirm the generic character of the model and its effectiveness for describing the emergence of various kinds of swarm intelligence; and they also demonstrate that the model is straightforward to apply, without the need for complicated computations.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 相似度 · CASES · 地球 ·
2021 年 10 月 29 日

We apply a mean-field model of interactions between migrating barchan dunes, the CAFE model, which includes calving, aggregation, fragmentation, and mass-exchange, yielding a steady-state size distribution that can be resolved for different choices of interaction parameters. The CAFE model is applied to empirically measured distributions of dune sizes in two barchan swarms on Mars, three swarms in Morocco, and one in Mauritania, each containing ~1000 bedforms, comparing the observed size distributions to the steady-states of the CAFE model. We find that the distributions in the Martian swarm are very similar to the swarm measured in Mauritania, suggesting that the two very different planetary environments however share similar dune interaction dynamics. Optimisation of the model parameters of three specific configurations of the CAFE model shows that the fit of the theoretical steady-state is often superior to the typically assumed log-normal. In all cases, the optimised parameters indicate that mass-exchange is the most frequent type of interaction. Calving is found to occur rarely in most of the swarms, with a highest rate of only 9\% of events, showing that interactions between multiple dunes rather than spontaneous calving are the driver of barchan size distributions. Finally, the implementation of interaction parameters derived from 3D simulations of dune-pair collisions indicates that sand flux between dunes is more important in producing the size distributions of the Moroccan swarms than of those in Mauritania and on Mars.

Cyber-physical systems (CPS) data privacy protection during sharing, aggregating, and publishing is a challenging problem. Several privacy protection mechanisms have been developed in the literature to protect sensitive data from adversarial analysis and eliminate the risk of re-identifying the original properties of shared data. However, most of the existing solutions have drawbacks, such as (i) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (ii) ignoring data providers privacy preference, (iii) using uniform privacy protection which may create inadequate privacy for some provider while overprotecting others, and (iv) lack of a comprehensive privacy quantification model assuring data privacy-preservation. To address these issues, we propose a personalized privacy preference framework by characterizing and quantifying the CPS vulnerabilities as well as ensuring privacy. First, we introduce a standard vulnerability profiling library (SVPL) by arranging the nodes of an energy-CPS from maximum to minimum vulnerable based on their privacy loss. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that our privacy characterization and quantification model can attain better privacy preservation by eliminating the trade-off between privacy, utility, and risk of losing information.

Much of the micro data used for epidemiological studies contain sensitive measurements on real individuals. As a result, such micro data cannot be published out of privacy concerns, rendering any published statistical analyses on them nearly impossible to reproduce. To promote the dissemination of key datasets for analysis without jeopardizing the privacy of individuals, we introduce a cohesive Bayesian framework for the generation of fully synthetic, high dimensional micro datasets of mixed categorical, binary, count, and continuous variables. This process centers around a joint Bayesian model that is simultaneously compatible with all of these data types, enabling the creation of mixed synthetic datasets through posterior predictive sampling. Furthermore, a focal point of epidemiological data analysis is the study of conditional relationships between various exposures and key outcome variables through regression analysis. We design a modified data synthesis strategy to target and preserve these conditional relationships, including both nonlinearities and interactions. The proposed techniques are deployed to create a synthetic version of a confidential dataset containing dozens of health, cognitive, and social measurements on nearly 20,000 North Carolina children.

Model-free Reinforcement Learning (RL) requires the ability to sample trajectories by taking actions in the original problem environment or a simulated version of it. Breakthroughs in the field of RL have been largely facilitated by the development of dedicated open source simulators with easy to use frameworks such as OpenAI Gym and its Atari environments. In this paper we propose to use the OpenAI Gym framework on discrete event time based Discrete Event Multi-Agent Simulation (DEMAS). We introduce a general technique to wrap a DEMAS simulator into the Gym framework. We expose the technique in detail and implement it using the simulator ABIDES as a base. We apply this work by specifically using the markets extension of ABIDES, ABIDES-Markets, and develop two benchmark financial markets OpenAI Gym environments for training daily investor and execution agents. As a result, these two environments describe classic financial problems with a complex interactive market behavior response to the experimental agent's action.

This paper explores the relationship between artificial intelligence and principles of distributive justice. Drawing upon the political philosophy of John Rawls, it holds that the basic structure of society should be understood as a composite of socio-technical systems, and that the operation of these systems is increasingly shaped and influenced by AI. As a consequence, egalitarian norms of justice apply to the technology when it is deployed in these contexts. These norms entail that the relevant AI systems must meet a certain standard of public justification, support citizens rights, and promote substantively fair outcomes -- something that requires specific attention be paid to the impact they have on the worst-off members of society.

Current training objectives of existing person Re-IDentification (ReID) models only ensure that the loss of the model decreases on selected training batch, with no regards to the performance on samples outside the batch. It will inevitably cause the model to over-fit the data in the dominant position (e.g., head data in imbalanced class, easy samples or noisy samples). %We call the sample that updates the model towards generalizing on more data a generalizable sample. The latest resampling methods address the issue by designing specific criterion to select specific samples that trains the model generalize more on certain type of data (e.g., hard samples, tail data), which is not adaptive to the inconsistent real world ReID data distributions. Therefore, instead of simply presuming on what samples are generalizable, this paper proposes a one-for-more training objective that directly takes the generalization ability of selected samples as a loss function and learn a sampler to automatically select generalizable samples. More importantly, our proposed one-for-more based sampler can be seamlessly integrated into the ReID training framework which is able to simultaneously train ReID models and the sampler in an end-to-end fashion. The experimental results show that our method can effectively improve the ReID model training and boost the performance of ReID models.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

In this paper, we propose a novel conditional generative adversarial nets based image captioning framework as an extension of traditional reinforcement learning (RL) based encoder-decoder architecture. To deal with the inconsistent evaluation problem between objective language metrics and subjective human judgements, we are inspired to design some "discriminator" networks to automatically and progressively determine whether generated caption is human described or machine generated. Two kinds of discriminator architecture (CNN and RNN based structures) are introduced since each has its own advantages. The proposed algorithm is generic so that it can enhance any existing encoder-decoder based image captioning model and we show that conventional RL training method is just a special case of our framework. Empirically, we show consistent improvements over all language evaluation metrics for different stage-of-the-art image captioning models.

Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.

北京阿比特科技有限公司