亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, cross-modal reasoning (CMR), the process of understanding and reasoning across different modalities, has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics. As the deployment of AI systems becomes more ubiquitous, the demand for transparency and comprehensibility in these systems' decision-making processes has intensified. This survey delves into the realm of interpretable cross-modal reasoning (I-CMR), where the objective is not only to achieve high predictive performance but also to provide human-understandable explanations for the results. This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR. Furthermore, this survey reviews the existing CMR datasets with annotations for explanations. Finally, this survey summarizes the challenges for I-CMR and discusses potential future directions. In conclusion, this survey aims to catalyze the progress of this emerging research area by providing researchers with a panoramic and comprehensive perspective, illuminating the state of the art and discerning the opportunities.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

With the advancement of data-driven techniques, addressing continuous con-trol challenges has become more efficient. However, the reliance of these methods on historical data introduces the potential for unexpected decisions in novel scenarios. To enhance performance in autonomous driving and collision avoidance, we propose a symbiotic fusion of policy gradient with safety-based control. In this study, we em-ploy the Deep Deterministic Policy Gradient (DDPG) algorithm to enable autono-mous driving in the absence of surrounding vehicles. By training the vehicle's driving policy within a stable and familiar environment, a robust and efficient learning pro-cess is achieved. Subsequently, an artificial potential field approach is utilized to formulate a collision avoidance algorithm, accounting for the presence of surround-ing vehicles. Furthermore, meticulous consideration is given to path tracking meth-ods. The amalgamation of these approaches demonstrates substantial performance across diverse scenarios, underscoring its potential for advancing autonomous driving while upholding safety standards.

As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays.

Accident of struck-by machines is one of the leading causes of casualties on construction sites. Monitoring workers' proximities to avoid human-machine collisions has aroused great concern in construction safety management. Existing methods are either too laborious and costly to apply extensively, or lacking spatial perception for accurate monitoring. Therefore, this study proposes a novel framework for proximity monitoring using only an ordinary 2D camera to realize real-time human-machine collision warning, which is designed to integrate a monocular 3D object detection model to perceive spatial information from 2D images and a post-processing classification module to identify the proximity as four predefined categories: Dangerous, Potentially Dangerous, Concerned, and Safe. A virtual dataset containing 22000 images with 3D annotations is constructed and publicly released to facilitate the system development and evaluation. Experimental results show that the trained 3D object detection model achieves 75% loose AP within 20 meters. Besides, the implemented system is real-time and camera carrier-independent, achieving an F1 of roughly 0.8 within 50 meters under specified settings for machines of different sizes. This study preliminarily reveals the potential and feasibility of proximity monitoring using only a 2D camera, providing a new promising and economical way for early warning of human-machine collisions.

Generative retrieval, which is a new advanced paradigm for document retrieval, has recently attracted research interests, since it encodes all documents into the model and directly generates the retrieved documents. However, its power is still underutilized since it heavily relies on the "preprocessed" document identifiers (docids), thus limiting its retrieval performance and ability to retrieve new documents. In this paper, we propose a novel fully end-to-end retrieval paradigm. It can not only end-to-end learn the best docids for existing and new documents automatically via a semantic indexing module, but also perform end-to-end document retrieval via an encoder-decoder-based generative model, namely Auto Search Indexer (ASI). Besides, we design a reparameterization mechanism to combine the above two modules into a joint optimization framework. Extensive experimental results demonstrate the superiority of our model over advanced baselines on both public and industrial datasets and also verify the ability to deal with new documents.

Physics-informed neural networks have shown great promise in solving partial differential equations. However, due to insufficient robustness, vanilla PINNs often face challenges when solving complex PDEs, especially those involving multi-scale behaviors or solutions with sharp or oscillatory characteristics. To address these issues, based on the projected gradient descent adversarial attack, we proposed an adversarial training strategy for PINNs termed by AT-PINNs. AT-PINNs enhance the robustness of PINNs by fine-tuning the model with adversarial samples, which can accurately identify model failure locations and drive the model to focus on those regions during training. AT-PINNs can also perform inference with temporal causality by selecting the initial collocation points around temporal initial values. We implement AT-PINNs to the elliptic equation with multi-scale coefficients, Poisson equation with multi-peak solutions, Burgers equation with sharp solutions and the Allen-Cahn equation. The results demonstrate that AT-PINNs can effectively locate and reduce failure regions. Moreover, AT-PINNs are suitable for solving complex PDEs, since locating failure regions through adversarial attacks is independent of the size of failure regions or the complexity of the distribution.

Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司