Internet of Things (IoT) devices and applications can have significant vulnerabilities, which may be exploited by adversaries to cause considerable harm. An important approach for mitigating this threat is remote attestation, which enables the defender to remotely verify the integrity of devices and their software. There are a number of approaches for remote attestation, and each has its unique advantages and disadvantages in terms of detection accuracy and computational cost. Further, an attestation method may be applied in multiple ways, such as various levels of software coverage. Therefore, to minimize both security risks and computational overhead, defenders need to decide strategically which attestation methods to apply and how to apply them, depending on the characteristic of the devices and the potential losses. To answer these questions, we first develop a testbed for remote attestation of IoT devices, which enables us to measure the detection accuracy and performance overhead of various attestation methods. Our testbed integrates two example IoT applications, memory-checksum based attestation, and a variety of software vulnerabilities that allow adversaries to inject arbitrary code into running applications. Second, we model the problem of finding an optimal strategy for applying remote attestation as a Stackelberg security game between a defender and an adversary. We characterize the defender's optimal attestation strategy in a variety of special cases. Finally, building on experimental results from our testbed, we evaluate our model and show that optimal strategic attestation can lead to significantly lower losses than naive baseline strategies.
Despite cobots have high potential in bringing several benefits in the manufacturing and logistic processes, but their rapid (re-)deployment in changing environments is still limited. To enable fast adaptation to new product demands and to boost the fitness of the human workers to the allocated tasks, we propose a novel method that optimizes assembly strategies and distributes the effort among the workers in human-robot cooperative tasks. The cooperation model exploits AND/OR Graphs that we adapted to solve also the role allocation problem. The allocation algorithm considers quantitative measurements that are computed online to describe human operator's ergonomic status and task properties. We conducted preliminary experiments to demonstrate that the proposed approach succeeds in controlling the task allocation process to ensure safe and ergonomic conditions for the human worker.
We consider a stochastic bandit problem with a possibly infinite number of arms. We write $p^*$ for the proportion of optimal arms and $\Delta$ for the minimal mean-gap between optimal and sub-optimal arms. We characterize the optimal learning rates both in the cumulative regret setting, and in the best-arm identification setting in terms of the problem parameters $T$ (the budget), $p^*$ and $\Delta$. For the objective of minimizing the cumulative regret, we provide a lower bound of order $\Omega(\log(T)/(p^*\Delta))$ and a UCB-style algorithm with matching upper bound up to a factor of $\log(1/\Delta)$. Our algorithm needs $p^*$ to calibrate its parameters, and we prove that this knowledge is necessary, since adapting to $p^*$ in this setting is impossible. For best-arm identification we also provide a lower bound of order $\Omega(\exp(-cT\Delta^2 p^*))$ on the probability of outputting a sub-optimal arm where $c>0$ is an absolute constant. We also provide an elimination algorithm with an upper bound matching the lower bound up to a factor of order $\log(T)$ in the exponential, and that does not need $p^*$ or $\Delta$ as parameter. Our results apply directly to the three related problems of competing against the $j$-th best arm, identifying an $\epsilon$ good arm, and finding an arm with mean larger than a quantile of a known order.
Recently, Metaverse has attracted increasing attention from both industry and academia, because of the significant potential to integrate real and digital worlds ever more seamlessly. By combining advanced wireless communications, edge computing and virtual reality (VR) technologies into Metaverse, a multidimensional, intelligent and powerful wireless edge Metaverse is created for future human society. In this paper, we design a privacy preserving targeted advertising strategy for the wireless edge Metaverse. Specifically, a Metaverse service provider (MSP) allocates bandwidth to the VR users so that the users can access Metaverse from edge access points. To protect users' privacy, the covert communication technique is used in the downlink. Then, the MSP can offer high-quality access services to earn more profits. Motivated by the concept of "covert", targeted advertising is used to promote the sale of bandwidth and ensure that the advertising strategy cannot be detected by competitors who may make counter-offer and by attackers who want to disrupt the services. We derive the best advertising strategy in terms of budget input, with the help of the Vidale-Wolfe model and Hamiltonian function. Furthermore, we propose a novel metric named Meta-Immersion to represent the user's experience feelings. The performance evaluation shows that the MSP can boost its revenue with an optimal targeted advertising strategy, especially compared with that without the advertising.
Unmanned aerial vehicles serving as aerial base stations (UAV-BSs) can be deployed to provide wireless connectivity to ground devices in events of increased network demand, points-of-failure in existing infrastructure, or disasters. However, it is challenging to conserve the energy of UAVs during prolonged coverage tasks, considering their limited on-board battery capacity. Reinforcement learning-based (RL) approaches have been previously used to improve energy utilization of multiple UAVs, however, a central cloud controller is assumed to have complete knowledge of the end-devices' locations, i.e., the controller periodically scans and sends updates for UAV decision-making. This assumption is impractical in dynamic network environments with UAVs serving mobile ground devices. To address this problem, we propose a decentralized Q-learning approach, where each UAV-BS is equipped with an autonomous agent that maximizes the connectivity of mobile ground devices while improving its energy utilization. Experimental results show that the proposed design significantly outperforms the centralized approaches in jointly maximizing the number of connected ground devices and the energy utilization of the UAV-BSs.
When processing data with uncertainty, it is desirable that the output of the algorithm is stable against small perturbations in the input. Varma and Yoshida [SODA'21] recently formalized this idea and proposed the notion of average sensitivity of algorithms, which is roughly speaking, the average Hamming distance between solutions for the original input and that obtained by deleting one element from the input, where the average is taken over the deleted element. In this work, we consider average sensitivity of algorithms for problems that can be solved by dynamic programming. We first present a $(1-\delta)$-approximation algorithm for finding a maximum weight chain (MWC) in a transitive directed acyclic graph with average sensitivity $O(\delta^{-1}\log^3 n)$, where $n$ is the number of vertices in the graph. We then show algorithms with small average sensitivity for various dynamic programming problems by reducing them to the MWC problem while preserving average sensitivity, including the longest increasing subsequence problem, the interval scheduling problem, the longest common subsequence problem, the longest palindromic subsequence problem, the knapsack problem with integral weight, and the RNA folding problem. For the RNA folding problem, our reduction is highly nontrivial because a naive reduction generates an exponentially large graph, which only provides a trivial average sensitivity bound.
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.
Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender and the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies.
We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.