亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In crowd scenarios, predicting trajectories of pedestrians is a complex and challenging task depending on many external factors. The topology of the scene and the interactions between the pedestrians are just some of them. Due to advancements in data-science and data collection technologies deep learning methods have recently become a research hotspot in numerous domains. Therefore, it is not surprising that more and more researchers apply these methods to predict trajectories of pedestrians. This paper compares these relatively new deep learning algorithms with classical knowledge-based models that are widely used to simulate pedestrian dynamics. It provides a comprehensive literature review of both approaches, explores technical and application oriented differences, and addresses open questions as well as future development directions. Our investigations point out that the pertinence of knowledge-based models to predict local trajectories is nowadays questionable because of the high accuracy of the deep learning algorithms. Nevertheless, the ability of deep-learning algorithms for large-scale simulation and the description of collective dynamics remains to be demonstrated. Furthermore, the comparison shows that the combination of both approaches (the hybrid approach) seems to be promising to overcome disadvantages like the missing explainability of the deep learning approach.

相關內容

This paper presents a novel approach to pedestrian trajectory prediction for on-board camera systems, which utilizes behavioral features of pedestrians that can be inferred from visual observations. Our proposed method, called Behavior-Aware Pedestrian Trajectory Prediction (BA-PTP), processes multiple input modalities, i.e. bounding boxes, body and head orientation of pedestrians as well as their pose, with independent encoding streams. The encodings of each stream are fused using a modality attention mechanism, resulting in a final embedding that is used to predict future bounding boxes in the image. In experiments on two datasets for pedestrian behavior prediction, we demonstrate the benefit of using behavioral features for pedestrian trajectory prediction and evaluate the effectiveness of the proposed encoding strategy. Additionally, we investigate the relevance of different behavioral features on the prediction performance based on an ablation study.

The alfalfa crop is globally important as livestock feed, so highly efficient planting and harvesting could benefit many industries, especially as the global climate changes and traditional methods become less accurate. Recent work using machine learning (ML) to predict yields for alfalfa and other crops has shown promise. Previous efforts used remote sensing, weather, planting, and soil data to train machine learning models for yield prediction. However, while remote sensing works well, the models require large amounts of data and cannot make predictions until the harvesting season begins. Using weather and planting data from alfalfa variety trials in Kentucky and Georgia, our previous work compared feature selection techniques to find the best technique and best feature set. In this work, we trained a variety of machine learning models, using cross validation for hyperparameter optimization, to predict biomass yields, and we showed better accuracy than similar work that employed more complex techniques. Our best individual model was a random forest with a mean absolute error of 0.081 tons/acre and R{$^2$} of 0.941. Next, we expanded this dataset to include Wisconsin and Mississippi, and we repeated our experiments, obtaining a higher best R{$^2$} of 0.982 with a regression tree. We then isolated our testing datasets by state to explore this problem's eligibility for domain adaptation (DA), as we trained on multiple source states and tested on one target state. This Trivial DA (TDA) approach leaves plenty of room for improvement through exploring more complex DA techniques in forthcoming work.

Model-based and learning-based methods are two major types of methodologies to model car following behaviors. Model-based methods describe the car-following behaviors with explicit mathematical equations, while learning-based methods focus on getting a mapping between inputs and outputs. Both types of methods have advantages and weaknesses. Meanwhile, most car-following models are generative and only consider the inputs of the speed, position, and acceleration of the last time step. To address these issues, this study proposes a novel framework called IDM-Follower that can generate a sequence of following vehicle trajectory by a recurrent autoencoder informed by a physical car-following model, the Intelligent Driving Model (IDM).We implement a novel structure with two independent encoders and a self-attention decoder that could sequentially predict the following trajectories. A loss function considering the discrepancies between predictions and labeled data integrated with discrepancies from model-based predictions is implemented to update the neural network parameters. Numerical experiments with multiple settings on simulation and NGSIM datasets show that the IDM-Follower can improve the prediction performance compared to the model-based or learning-based methods alone. Analysis on different noise levels also shows good robustness of the model.

This paper reviews the state of the art in satellite and machine learning based poverty estimates and finds some interesting results. The most important factors correlated to the predictive power of welfare in the reviewed studies are the number of pre-processing steps employed, the number of datasets used, the type of welfare indicator targeted, and the choice of AI model. As expected, studies that used hard indicators as targets achieved better performance in predicting welfare than those that targeted soft ones. Also expected was the number of pre-processing steps and datasets used having a positive and statistically significant relationship with welfare estimation performance. Even more important, we find that the combination of ML and DL significantly increases predictive power by as much as 15 percentage points compared to using either alone. Surprisingly, we find that the spatial resolution of the satellite imagery used is important but not critical to the performance as the relationship is positive but not statistically significant. The finding of no evidence indicating that predictive performance of a statistically significant effect occurs over time was also unexpected. These findings have important implications for future research in this domain. For example, the level of effort and resources devoted to acquiring more expensive, higher resolution SI will have to be reconsidered given that medium resolutions ones seem to achieve similar results. The increasingly popular approach of combining ML, DL, and TL, either in a concurrent or iterative manner, might become a standard approach to achieving better results.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

北京阿比特科技有限公司