亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Socio-economic constructs and urban topology are crucial drivers of human mobility patterns. During the COVID-19 pandemic, these patterns were re-shaped in their main two components: the spatial dimension represented by the daily travelled distance, and the temporal dimension expressed as the synchronisation time of commuting routines. Leveraging location-based data from de-identified mobile phone users, we observed that during lockdowns restrictions, the decrease of spatial mobility is interwoven with the emergence of asynchronous mobility dynamics. The lifting of restriction in urban mobility allowed a faster recovery of the spatial dimension compared to the temporal one. Moreover, the recovery in mobility was different depending on urbanisation levels and economic stratification. In rural and low-income areas, the spatial mobility dimension suffered a more significant disruption when compared to urbanised and high-income areas. In contrast, the temporal dimension was more affected in urbanised and high-income areas than in rural and low-income areas.

相關內容

In recent years, with the rapid growth of Internet data, the number and types of scientific and technological resources are also rapidly expanding. However, the increase in the number and category of information data will also increase the cost of information acquisition. For technology-based enterprises or users, in addition to general papers, patents, etc., policies related to technology or the development of their industries should also belong to a type of scientific and technological resources. The cost and difficulty of acquiring users. Extracting valuable science and technology policy resources from a huge amount of data with mixed contents and providing accurate and fast retrieval will help to break down information barriers and reduce the cost of information acquisition, which has profound social significance and social utility. This article focuses on the difficulties and problems in the field of science and technology policy, and introduces related technologies and developments.

In the peg insertion task, human pays attention to the seam between the peg and the hole and tries to fill it continuously with visual feedback. By imitating the human behavior, we design architectures with position and orientation estimators based on the seam representation for pose alignment, which proves to be general to the unseen peg geometries. By putting the estimators into the closed-loop control with reinforcement learning, we further achieve a higher or comparable success rate, efficiency, and robustness compared with the baseline methods. The policy is trained totally in simulation without any manual intervention. To achieve sim-to-real, a learnable segmentation module with automatic data collecting and labeling can be easily trained to decouple the perception and the policy, which helps the model trained in simulation quickly adapt to the real world with negligible effort. Results are presented in simulation and on a physical robot. Code, videos, and supplemental material are available at //github.com/xieliang555/SFN.git

The growing complexity of Cyber-Physical Systems (CPS) and challenges in ensuring safety and security have led to the increasing use of deep learning methods for accurate and scalable anomaly detection. However, machine learning (ML) models often suffer from low performance in predicting unexpected data and are vulnerable to accidental or malicious perturbations. Although robustness testing of deep learning models has been extensively explored in applications such as image classification and speech recognition, less attention has been paid to ML-driven safety monitoring in CPS. This paper presents the preliminary results on evaluating the robustness of ML-based anomaly detection methods in safety-critical CPS against two types of accidental and malicious input perturbations, generated using a Gaussian-based noise model and the Fast Gradient Sign Method (FGSM). We test the hypothesis of whether integrating the domain knowledge (e.g., on unsafe system behavior) with the ML models can improve the robustness of anomaly detection without sacrificing accuracy and transparency. Experimental results with two case studies of Artificial Pancreas Systems (APS) for diabetes management show that ML-based safety monitors trained with domain knowledge can reduce on average up to 54.2% of robustness error and keep the average F1 scores high while improving transparency.

The Coronavirus disease 2019 (COVID-19) outbreak quickly spread around the world, resulting in over 240 million infections and 4 million deaths by Oct 2021. While the virus is spreading from person to person silently, fear has also been spreading around the globe. The COVID-19 information from the Australian Government is convincing but not timely or detailed, and there is much information on social networks with both facts and rumors. As software engineers, we have spontaneously and rapidly constructed a COVID-19 information dashboard aggregating reliable information semi-automatically checked from different sources for providing one-stop information sharing site about the latest status in Australia. Inspired by the John Hopkins University COVID-19 Map, our dashboard contains the case statistics, case distribution, government policy, latest news, with interactive visualization. In this paper, we present a participant's in-person observations in which the authors acted as founders of //covid-19-au.com/ serving more than 830K users with 14M page views since March 2020. According to our first-hand experience, we summarize 9 lessons for developers, researchers and instructors. These lessons may inspire the development, research and teaching in software engineer aspects for coping with similar public crises in the future.

In the upcoming 6G era, existing terrestrial networks have evolved toward space-air-ground integrated networks (SAGIN), providing ultra-high data rates, seamless network coverage, and ubiquitous intelligence for communications of applications and services. However, conventional communications in SAGIN still face data confidentiality issues. Fortunately, the concept of Quantum Key Distribution (QKD) over SAGIN is able to provide information-theoretic security for secure communications in SAGIN with quantum cryptography. Therefore, in this paper, we propose the quantum-secured SAGIN which is feasible to achieve proven secure communications using quantum mechanics to protect data channels between space, air, and ground nodes. Moreover, we propose a universal QKD service provisioning framework to minimize the cost of QKD services under the uncertainty and dynamics of communications in quantum-secured SAGIN. In this framework, fiber-based QKD services are deployed in passive optical networks with the advantages of low loss and high stability. Moreover, the widely covered and flexible satellite- and UAV-based QKD services are provisioned as a supplement during the real-time data transmission phase. Finally, to examine the effectiveness of the proposed concept and framework, a case study of quantum-secured SAGIN in the Metaverse is conducted where uncertain and dynamic factors of the secure communications in Metaverse applications are effectively resolved in the proposed framework.

Cryptocurrency has been extensively studied as a decentralized financial technology built on blockchain. However, there is a lack of understanding of user experience with cryptocurrency exchanges, the main means for novice users to interact with cryptocurrency. We conduct a qualitative study to provide a panoramic view of user experience and security perception of exchanges. All 15 Chinese participants mainly use centralized exchanges (CEX) instead of decentralized exchanges (DEX) to trade decentralized cryptocurrency, which is paradoxical. A closer examination reveals that CEXes provide better usability and charge lower transaction fee than DEXes. Country-specific security perceptions are observed. Though DEXes provide better anonymity and privacy protection, and are free of governmental regulation, these are not necessary features for many participants. Based on the findings, we propose design implications to make cryptocurrency trading more decentralized.

The rapid growth of biomedical literature poses a significant challenge for curation and interpretation. This has become more evident during the COVID-19 pandemic. LitCovid, a literature database of COVID-19 related papers in PubMed, has accumulated over 180,000 articles with millions of accesses. Approximately 10,000 new articles are added to LitCovid every month. A main curation task in LitCovid is topic annotation where an article is assigned with up to eight topics, e.g., Treatment and Diagnosis. The annotated topics have been widely used both in LitCovid (e.g., accounting for ~18% of total uses) and downstream studies such as network generation. However, it has been a primary curation bottleneck due to the nature of the task and the rapid literature growth. This study proposes LITMC-BERT, a transformer-based multi-label classification method in biomedical literature. It uses a shared transformer backbone for all the labels while also captures label-specific features and the correlations between label pairs. We compare LITMC-BERT with three baseline models on two datasets. Its micro-F1 and instance-based F1 are 5% and 4% higher than the current best results, respectively, and only requires ~18% of the inference time than the Binary BERT baseline. The related datasets and models are available via //github.com/ncbi/ml-transformer.

In this paper, we introduce $\mathsf{CO}_3$, an algorithm for communication-efficiency federated Deep Neural Network (DNN) training.$\mathsf{CO}_3$ takes its name from three processing applied steps which reduce the communication load when transmitting the local gradients from the remote users to the Parameter Server.Namely:(i) gradient quantization through floating-point conversion, (ii) lossless compression of the quantized gradient, and (iii) quantization error correction.We carefully design each of the steps above so as to minimize the loss in the distributed DNN training when the communication overhead is fixed.In particular, in the design of steps (i) and (ii), we adopt the assumption that DNN gradients are distributed according to a generalized normal distribution.This assumption is validated numerically in the paper. For step (iii), we utilize an error feedback with memory decay mechanism to correct the quantization error introduced in step (i). We argue that this coefficient, similarly to the learning rate, can be optimally tuned to improve convergence. The performance of $\mathsf{CO}_3$ is validated through numerical simulations and is shown having better accuracy and improved stability at a reduced communication payload.

Loneliness has been associated with negative outcomes for physical and mental health. Understanding how people express and cope with various forms of loneliness is critical for early screening and targeted interventions to reduce loneliness, particularly among vulnerable groups such as young adults. To examine how different forms of loneliness and coping strategies manifest in loneliness self-disclosure, we built a dataset, FIG-Loneliness (FIne-Grained Loneliness) by using Reddit posts in two young adult-focused forums and two loneliness related forums consisting of a diverse age group. We provided annotations by trained human annotators for binary and fine-grained loneliness classifications of the posts. Trained on FIG-Loneliness, two BERT-based models were used to understand loneliness forms and authors' coping strategies in these forums. Our binary loneliness classification achieved an accuracy above 97%, and fine-grained loneliness category classification reached an average accuracy of 77% across all labeled categories. With FIG-Loneliness and model predictions, we found that loneliness expressions in the young adults related forums were distinct from other forums. Those in young adult-focused forums were more likely to express concerns pertaining to peer relationship, and were potentially more sensitive to geographical isolation impacted by the COVID-19 pandemic lockdown. Also, we showed that different forms of loneliness have differential use in coping strategies.

The coronavirus pandemic has spread over the past two years in our highly connected and information-dense society. Nonetheless, disseminating accurate and up-to-date information on the spread of this pandemic remains a challenge. In this context, opting for a solution based on conversational artificial intelligence, also known under the name of the chatbot, is proving to be an unavoidable solution, especially since it has already shown its effectiveness in fighting the coronavirus crisis in several countries. This work proposes to design and implement a smart chatbot on the theme of COVID-19, called COVIBOT, which will be useful in the context of Saudi Arabia. COVIBOT is a generative-based contextual chatbot, which is built using machine learning APIs that are offered by the cloud-based Azure Cognitive Services. Two versions of COVIBOT are offered: English and Arabic versions. Use cases of COVIBOT are tested and validated using a scenario-based approach.

北京阿比特科技有限公司