Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.
We introduce a simple and stable computational method for ill-posed partial differential equation (PDE) problems. The method is based on Schr\"odingerization, introduced in [S. Jin, N. Liu and Y. Yu, arXiv:2212.13969][S. Jin, N. Liu and Y. Yu, Phys. Rev. A, 108 (2023), 032603], which maps all linear PDEs into Schr\"odinger-type equations in one higher dimension, for quantum simulations of these PDEs. Although the original problem is ill-posed, the Schr\"odingerized equations are Hamiltonian systems and time-reversible, allowing stable computation both forward and backward in time. The original variable can be recovered by data from suitably chosen domain in the extended dimension. We will use the backward heat equation and the linear convection equation with imaginary wave speed as examples. Error analysis of these algorithms are conducted and verified numerically. The methods are applicable to both classical and quantum computers, and we also lay out quantum algorithms for these methods. Moreover, we introduce a smooth initialization for the Schr\"odingerized equation which will lead to essentially spectral accuracy for the approximation in the extended space, if a spectral method is used. Consequently, the extra qubits needed due to the extra dimension, if a qubit based quantum algorithm is used, for both well-posed and ill-posed problems, becomes almost $\log\log {1/\varepsilon}$ where $\varepsilon$ is the desired precision. This optimizes the complexity of the Schr\"odingerization based quantum algorithms for any non-unitary dynamical system introduced in [S. Jin, N. Liu and Y. Yu, arXiv:2212.13969][S. Jin, N. Liu and Y. Yu, Phys. Rev. A, 108 (2023), 032603].
We propose a new numerical method for $\alpha$-dissipative solutions of the Hunter-Saxton equation, where $\alpha$ belongs to $W^{1, \infty}(\mathbb{R}, [0, 1))$. The method combines a projection operator with a generalized method of characteristics and an iteration scheme, which is based on enforcing minimal time steps whenever breaking times cluster. Numerical examples illustrate that these minimal time steps increase the efficiency of the algorithm substantially. Moreover, convergence of the wave profile is shown in $C([0, T], L^{\infty}(\mathbb{R}))$ for any finite $T \geq 0$.
The unpredictability of random numbers is fundamental to both digital security and applications that fairly distribute resources. However, existing random number generators have limitations-the generation processes cannot be fully traced, audited, and certified to be unpredictable. The algorithmic steps used in pseudorandom number generators are auditable, but they cannot guarantee that their outputs were a priori unpredictable given knowledge of the initial seed. Device-independent quantum random number generators can ensure that the source of randomness was unknown beforehand, but the steps used to extract the randomness are vulnerable to tampering. Here, for the first time, we demonstrate a fully traceable random number generation protocol based on device-independent techniques. Our protocol extracts randomness from unpredictable non-local quantum correlations, and uses distributed intertwined hash chains to cryptographically trace and verify the extraction process. This protocol is at the heart of a public traceable and certifiable quantum randomness beacon that we have launched. Over the first 40 days of operation, we completed the protocol 7434 out of 7454 attempts -- a success rate of 99.7%. Each time the protocol succeeded, the beacon emitted a pulse of 512 bits of traceable randomness. The bits are certified to be uniform with error times actual success probability bounded by $2^{-64}$. The generation of certifiable and traceable randomness represents one of the first public services that operates with an entanglement-derived advantage over comparable classical approaches.
In this work is considered an elliptic problem, referred to as the Ventcel problem, involvinga second order term on the domain boundary (the Laplace-Beltrami operator). A variationalformulation of the Ventcel problem is studied, leading to a finite element discretization. Thefocus is on the construction of high order curved meshes for the discretization of the physicaldomain and on the definition of the lift operator, which is aimed to transform a functiondefined on the mesh domain into a function defined on the physical one. This lift is definedin a way as to satisfy adapted properties on the boundary, relatively to the trace operator.The Ventcel problem approximation is investigated both in terms of geometrical error and offinite element approximation error. Error estimates are obtained both in terms of the meshorder r $\ge$ 1 and to the finite element degree k $\ge$ 1, whereas such estimates usually have beenconsidered in the isoparametric case so far, involving a single parameter k = r. The numericalexperiments we led, both in dimension 2 and 3, allow us to validate the results obtained andproved on the a priori error estimates depending on the two parameters k and r. A numericalcomparison is made between the errors using the former lift definition and the lift defined inthis work establishing an improvement in the convergence rate of the error in the latter case.
The sum-of-squares hierarchy of semidefinite programs has become a common tool for algorithm design in theoretical computer science, including problems in quantum information. In this work we study a connection between a Hermitian version of the SoS hierarchy, related to the quantum de Finetti theorem, and geometric quantization of compact K\"ahler manifolds (such as complex projective space $\mathbb{C}P^{d}$, the set of all pure states in a $(d + 1)$-dimensional Hilbert space). We show that previously known HSoS rounding algorithms can be recast as quantizing an objective function to obtain a finite-dimensional matrix, finding its top eigenvector, and then (possibly nonconstructively) rounding it by using a version of the Husimi quasiprobability distribution. Dually, we recover most known quantum de Finetti theorems by doing the same steps in the reverse order: a quantum state is first approximated by its Husimi distribution, and then quantized to obtain a separable state approximating the original one. In cases when there is a transitive group action on the manifold we give some new proofs of existing de Finetti theorems, as well as some applications including a new version of Renner's exponential de Finetti theorem proven using the Borel--Weil--Bott theorem, and hardness of approximation results and optimal degree-2 integrality gaps for the basic SDP relaxation of \textsc{Quantum Max-$d$-Cut} (for arbitrary $d$). We also describe how versions of these results can be proven when there is no transitive group action. In these cases we can deduce some error bounds for the HSoS hierarchy on complex projective varieties which are smooth.
There has been a surge of interest in uncertainty quantification for parametric partial differential equations (PDEs) with Gevrey regular inputs. The Gevrey class contains functions that are infinitely smooth with a growth condition on the higher-order partial derivatives, but which are nonetheless not analytic in general. Recent studies by Chernov and Le (Comput. Math. Appl., 2024, and SIAM J. Numer. Anal., 2024) as well as Harbrecht, Schmidlin, and Schwab (Math. Models Methods Appl. Sci., 2024) analyze the setting wherein the input random field is assumed to be uniformly bounded with respect to the uncertain parameters. In this paper, we relax this assumption and allow for parameter-dependent bounds. The parametric inputs are modeled as generalized Gaussian random variables, and we analyze the application of quasi-Monte Carlo (QMC) integration to assess the PDE response statistics using randomly shifted rank-1 lattice rules. In addition to the QMC error analysis, we also consider the dimension truncation and finite element errors in this setting.
We propose a novel, highly efficient, second-order accurate, long-time unconditionally stable numerical scheme for a class of finite-dimensional nonlinear models that are of importance in geophysical fluid dynamics. The scheme is highly efficient in the sense that only a (fixed) symmetric positive definite linear problem (with varying right hand sides) is involved at each time-step. The solutions to the scheme are uniformly bounded for all time. We show that the scheme is able to capture the long-time dynamics of the underlying geophysical model, with the global attractors as well as the invariant measures of the scheme converge to those of the original model as the step size approaches zero. In our numerical experiments, we take an indirect approach, using long-term statistics to approximate the invariant measures. Our results suggest that the convergence rate of the long-term statistics, as a function of terminal time, is approximately first order using the Jensen-Shannon metric and half-order using the L1 metric. This implies that very long time simulation is needed in order to capture a few significant digits of long time statistics (climate) correct. Nevertheless, the second order scheme's performance remains superior to that of the first order one, requiring significantly less time to reach a small neighborhood of statistical equilibrium for a given step size.
The paper studies asymptotic properties of estimators of multidimensional stochastic differential equations driven by Brownian motions from high-frequency discrete data. Consistency and central limit properties of a class of estimators of the diffusion parameter and an approximate maximum likelihood estimator of the drift parameter based on a discretized likelihood function have been established in a suitable scaling regime involving the time-gap between the observations and the overall time span. Our framework is more general than that typically considered in the literature and, thus, has the potential to be applicable to a wider range of stochastic models.
Hamiltonian systems of ordinary and partial differential equations are fundamental across modern science and engineering, appearing in models that span virtually all physical scales. A critical property for the robustness and stability of computational methods in such systems is the symplectic structure, which preserves geometric properties like phase-space volume over time and energy conservation over an extended period. In this paper, we present quantum algorithms that incorporate symplectic integrators, ensuring the preservation of this key structure. We demonstrate how these algorithms maintain the symplectic properties for both linear and nonlinear Hamiltonian systems. Additionally, we provide a comprehensive theoretical analysis of the computational complexity, showing that our approach offers both accuracy and improved efficiency over classical algorithms. These results highlight the potential application of quantum algorithms for solving large-scale Hamiltonian systems while preserving essential physical properties.
We prove that in the algebraic metacomplexity framework, the decomposition of metapolynomials into their isotypic components can be implemented efficiently, namely with only a quasipolynomial blowup in the circuit size. This means that many existing algebraic complexity lower bound proofs can be efficiently converted into isotypic lower bound proofs via highest weight metapolynomials, a notion studied in geometric complexity theory. In the context of algebraic natural proofs, our result means that without loss of generality algebraic natural proofs can be assumed to be isotypic. Our proof is built on the Poincar\'e--Birkhoff--Witt theorem for Lie algebras and on Gelfand--Tsetlin theory, for which we give the necessary comprehensive background.