This study investigates the interplay among social demographics, built environment characteristics, and environmental hazard exposure features in determining community level cancer prevalence. Utilizing data from five Metropolitan Statistical Areas in the United States: Chicago, Dallas, Houston, Los Angeles, and New York, the study implemented an XGBoost machine learning model to predict the extent of cancer prevalence and evaluate the importance of different features. Our model demonstrates reliable performance, with results indicating that age, minority status, and population density are among the most influential factors in cancer prevalence. We further explore urban development and design strategies that could mitigate cancer prevalence, focusing on green space, developed areas, and total emissions. Through a series of experimental evaluations based on causal inference, the results show that increasing green space and reducing developed areas and total emissions could alleviate cancer prevalence. The study and findings contribute to a better understanding of the interplay among urban features and community health and also show the value of interpretable machine learning models for integrated urban design to promote public health. The findings also provide actionable insights for urban planning and design, emphasizing the need for a multifaceted approach to addressing urban health disparities through integrated urban design strategies.
We present a unified perspective on tackling various human-centric video tasks by learning human motion representations from large-scale and heterogeneous data resources. Specifically, we propose a pretraining stage in which a motion encoder is trained to recover the underlying 3D motion from noisy partial 2D observations. The motion representations acquired in this way incorporate geometric, kinematic, and physical knowledge about human motion, which can be easily transferred to multiple downstream tasks. We implement the motion encoder with a Dual-stream Spatio-temporal Transformer (DSTformer) neural network. It could capture long-range spatio-temporal relationships among the skeletal joints comprehensively and adaptively, exemplified by the lowest 3D pose estimation error so far when trained from scratch. Furthermore, our proposed framework achieves state-of-the-art performance on all three downstream tasks by simply finetuning the pretrained motion encoder with a simple regression head (1-2 layers), which demonstrates the versatility of the learned motion representations. Code and models are available at //motionbert.github.io/
The key innovation of our analytical method, CaRT, lies in establishing a new hierarchical, distributed architecture to guarantee the safety and robustness of a given learning-based motion planning policy. First, in a nominal setting, the analytical form of our CaRT safety filter formally ensures safe maneuvers of nonlinear multi-agent systems, optimally with minimal deviation from the learning-based policy. Second, in off-nominal settings, the analytical form of our CaRT robust filter optimally tracks the certified safe trajectory, generated by the previous layer in the hierarchy, the CaRT safety filter. We show using contraction theory that CaRT guarantees safety and the exponential boundedness of the trajectory tracking error, even under the presence of deterministic and stochastic disturbance. Also, the hierarchical nature of CaRT enables enhancing its robustness for safety just by its superior tracking to the certified safe trajectory, thereby making it suitable for off-nominal scenarios with large disturbances. This is a major distinction from conventional safety function-driven approaches, where the robustness originates from the stability of a safe set, which could pull the system over-conservatively to the interior of the safe set. Our log-barrier formulation in CaRT allows for its distributed implementation in multi-agent settings. We demonstrate the effectiveness of CaRT in several examples of nonlinear motion planning and control problems, including optimal, multi-spacecraft reconfiguration.
This paper studies the performance of the spectral method in the estimation and uncertainty quantification of the unobserved preference scores of compared entities in a very general and more realistic setup in which the comparison graph consists of hyper-edges of possible heterogeneous sizes and the number of comparisons can be as low as one for a given hyper-edge. Such a setting is pervasive in real applications, circumventing the need to specify the graph randomness and the restrictive homogeneous sampling assumption imposed in the commonly-used Bradley-Terry-Luce (BTL) or Plackett-Luce (PL) models. Furthermore, in the scenarios when the BTL or PL models are appropriate, we unravel the relationship between the spectral estimator and the Maximum Likelihood Estimator (MLE). We discover that a two-step spectral method, where we apply the optimal weighting estimated from the equal weighting vanilla spectral method, can achieve the same asymptotic efficiency as the MLE. Given the asymptotic distributions of the estimated preference scores, we also introduce a comprehensive framework to carry out both one-sample and two-sample ranking inferences, applicable to both fixed and random graph settings. It is noteworthy that it is the first time effective two-sample rank testing methods are proposed. Finally, we substantiate our findings via comprehensive numerical simulations and subsequently apply our developed methodologies to perform statistical inferences on statistics journals and movie rankings.
In the third round of the NIST Post-Quantum Cryptography standardization project, the focus is on optimizing software and hardware implementations of candidate schemes. The winning schemes are CRYSTALS Kyber and CRYSTALS Dilithium, which serve as a Key Encapsulation Mechanism (KEM) and Digital Signature Algorithm (DSA), respectively. This study utilizes the TaPaSCo open-source framework to create hardware building blocks for both schemes using High-level Synthesis (HLS) from minimally modified ANSI C software reference implementations across all security levels. Additionally, a generic TaPaSCo host runtime application is developed in Rust to verify their functionality through the standard NIST interface, utilizing the corresponding Known Answer Test mechanism on actual hardware. Building on this foundation, the communication overhead for TaPaSCo hardware accelerators on PCIe-connected FPGA devices is evaluated and compared with previous work and optimized AVX2 software reference implementations. The results demonstrate the feasibility of verifying and evaluating the performance of Post-Quantum Cryptography accelerators on real hardware using TaPaSCo. Furthermore, the off-chip accelerator communication overhead of the NIST standard interface is measured, which, on its own, outweighs the execution wall clock time of the optimized software reference implementation of Kyber at Security Level 1.
Physics-informed neural networks (PINNs) provide a framework to build surrogate models for dynamical systems governed by differential equations. During the learning process, PINNs incorporate a physics-based regularization term within the loss function to enhance generalization performance. Since simulating dynamics controlled by partial differential equations (PDEs) can be computationally expensive, PINNs have gained popularity in learning parametric surrogates for fluid flow problems governed by Navier-Stokes equations. In this work, we introduce RANS-PINN, a modified PINN framework, to predict flow fields (i.e., velocity and pressure) in high Reynolds number turbulent flow regimes. To account for the additional complexity introduced by turbulence, RANS-PINN employs a 2-equation eddy viscosity model based on a Reynolds-averaged Navier-Stokes (RANS) formulation. Furthermore, we adopt a novel training approach that ensures effective initialization and balance among the various components of the loss function. The effectiveness of the RANS-PINN framework is then demonstrated using a parametric PINN.
We study challenges using reinforcement learning in controlling energy systems, where apart from performance requirements, one has additional safety requirements such as avoiding blackouts. We detail how these safety requirements in real-time temporal logic can be strengthened via discretization into linear temporal logic (LTL), such that the satisfaction of the LTL formulae implies the satisfaction of the original safety requirements. The discretization enables advanced engineering methods such as synthesizing shields for safe reinforcement learning as well as formal verification, where for statistical model checking, the probabilistic guarantee acquired by LTL model checking forms a lower bound for the satisfaction of the original real-time safety requirements.
Current talking face generation methods mainly focus on speech-lip synchronization. However, insufficient investigation on the facial talking style leads to a lifeless and monotonous avatar. Most previous works fail to imitate expressive styles from arbitrary video prompts and ensure the authenticity of the generated video. This paper proposes an unsupervised variational style transfer model (VAST) to vivify the neutral photo-realistic avatars. Our model consists of three key components: a style encoder that extracts facial style representations from the given video prompts; a hybrid facial expression decoder to model accurate speech-related movements; a variational style enhancer that enhances the style space to be highly expressive and meaningful. With our essential designs on facial style learning, our model is able to flexibly capture the expressive facial style from arbitrary video prompts and transfer it onto a personalized image renderer in a zero-shot manner. Experimental results demonstrate the proposed approach contributes to a more vivid talking avatar with higher authenticity and richer expressiveness.
Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.