There is increasing interest in the adoption of LLMs in HCI research. However, LLMs may often be regarded as a panacea because of their powerful capabilities with an accompanying oversight on whether they are suitable for their intended tasks. We contend that LLMs should be adopted in a critical manner following rigorous evaluation. Accordingly, we present the evaluation of an LLM in identifying logical fallacies that will form part of a digital misinformation intervention. By comparing to a labeled dataset, we found that GPT-4 achieves an accuracy of 0.79, and for our intended use case that excludes invalid or unidentified instances, an accuracy of 0.90. This gives us the confidence to proceed with the application of the LLM while keeping in mind the areas where it still falls short. The paper describes our evaluation approach, results and reflections on the use of the LLM for our intended task.
An essential aspect of evaluating Large Language Models (LLMs) is identifying potential biases. This is especially relevant considering the substantial evidence that LLMs can replicate human social biases in their text outputs and further influence stakeholders, potentially amplifying harm to already marginalized individuals and communities. Therefore, recent efforts in bias detection invested in automated benchmarks and objective metrics such as accuracy (i.e., an LLMs output is compared against a predefined ground truth). Nonetheless, social biases can be nuanced, oftentimes subjective and context-dependent, where a situation is open to interpretation and there is no ground truth. While these situations can be difficult for automated evaluation systems to identify, human evaluators could potentially pick up on these nuances. In this paper, we discuss the role of human evaluation and subjective interpretation to augment automated processes when identifying biases in LLMs as part of a human-centred approach to evaluate these models.
Ensuring that AI systems reliably and robustly avoid harmful or dangerous behaviours is a crucial challenge, especially for AI systems with a high degree of autonomy and general intelligence, or systems used in safety-critical contexts. In this paper, we will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI. The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees. This is achieved by the interplay of three core components: a world model (which provides a mathematical description of how the AI system affects the outside world), a safety specification (which is a mathematical description of what effects are acceptable), and a verifier (which provides an auditable proof certificate that the AI satisfies the safety specification relative to the world model). We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them. We also argue for the necessity of this approach to AI safety, and for the inadequacy of the main alternative approaches.
Artificially sweetened beverages like Diet Coke are often considered healthier alternatives, but the debate over their impact on obesity persists. Previous research has predominantly relied on observational data or randomized controlled trials (RCTs), which may not accurately capture the causal relationship between Diet Coke consumption and obesity. This study uses causal inference methods, employing data from the National Health and Nutrition Examination Survey (NHANES) to examine this relationship across diverse demographics. Instead of relying on RCT data, we constructed a causal graph and applied the back-door criterion with its adjustment formula to estimate the RCT distributions. We then calculated the counterfactual quantity, the Probability of Necessity and Sufficiency (PNS), using both NHANES data and estimated RCT data. We propose that PNS is the essential metric for assessing the impact of Diet Coke on obesity. Our results indicate that between 20% to 50% of individuals, especially those with poor dietary habits, are more likely to gain weight from Diet Coke. Conversely, in groups like young females with healthier diets, only a small proportion experience weight gain due to Diet Coke. These findings highlight the influence of individual lifestyle and potential hormonal factors on the varied effects of Diet Coke, providing a new framework for understanding its nutritional impacts on health.
Drought is a complex environmental phenomenon that affects millions of people and communities all over the globe and is too elusive to be accurately predicted. This is mostly due to the scalability and variability of the web of environmental parameters that directly/indirectly causes the onset of different categories of drought. Since the dawn of man, efforts have been made to uniquely understand the natural indicators that provide signs of likely environmental events. These indicators/signs in the form of indigenous knowledge system have been used for generations. The intricate complexity of drought has, however, always been a major stumbling block for accurate drought prediction and forecasting systems. Recently, scientists in the field of agriculture and environmental monitoring have been discussing the integration of indigenous knowledge and scientific knowledge for a more accurate environmental forecasting system in order to incorporate diverse environmental information for a reliable drought forecast. Hence, in this research, the core objective is the development of a semantics-based data integration middleware that encompasses and integrates heterogeneous data models of local indigenous knowledge and sensor data towards an accurate drought forecasting system for the study areas. The local indigenous knowledge on drought gathered from the domain experts is transformed into rules to be used for performing deductive inference in conjunction with sensors data for determining the onset of drought through an automated inference generation module of the middleware. The semantic middleware incorporates, inter alia, a distributed architecture that consists of a streaming data processing engine based on Apache Kafka for real-time stream processing; a rule-based reasoning module; an ontology module for semantic representation of the knowledge bases.
Large Language Models (LLMs) have demonstrated exceptional proficiency in language-related tasks. However, their deployment presents significant challenges due to their substantial memory and storage requirements. To address this challenge, weight-only quantization has emerged as a promising solution. Previous research has indicated that fine-tuning through up and down rounding can enhance performance. In this study, we introduce SignRound, a method that utilizes signed gradient descent (SignSGD) to optimize rounding values and weight clipping within just 200 steps, combining the strengths of both Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ). SignRound achieves outstanding results compared to recent methods across 2 to 4 bits, while maintaining low tuning costs and without introducing any additional inference overhead. For instance, SignRound led to absolute average accuracy improvements ranging from 6.91\% to 33.22\% at 2 bits. Furthermore, it demonstrates robust generalization to various recent models and achieves near-lossless quantization in most scenarios at 4 bits. The source code is publicly available at \url{//github.com/intel/auto-round}.
Text generation with Large Language Models (LLMs) is known to be memory bound due to the combination of their auto-regressive nature, huge parameter counts, and limited memory bandwidths, often resulting in low token rates. Speculative decoding has been proposed as a solution for LLM inference acceleration. However, since draft models are often unavailable in the modern open-source LLM families, e.g., for Llama 2 7B, training a high-quality draft model is required to enable inference acceleration via speculative decoding. In this paper, we propose a simple draft model training framework for direct alignment to chat-capable target models. With the proposed framework, we train Llama 2 Chat Drafter 115M, a draft model for Llama 2 Chat 7B or larger, with only 1.64\% of the original size. Our training framework only consists of pretraining, distillation dataset generation, and finetuning with knowledge distillation, with no additional alignment procedure. For the finetuning step, we use instruction-response pairs generated by target model for distillation in plausible data distribution, and propose a new Total Variation Distance++ (TVD++) loss that incorporates variance reduction techniques inspired from the policy gradient method in reinforcement learning. Our empirical results show that Llama 2 Chat Drafter 115M with speculative decoding achieves up to 2.3 block efficiency and 2.4$\times$ speed-up relative to autoregressive decoding on various tasks with no further task-specific fine-tuning.
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.