亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A framework is presented to design multirate time stepping algorithms for two dissipative models with coupling across a physical interface. The coupling takes the form of boundary conditions imposed on the interface, relating the solution variables for both models to each other. The multirate aspect arises when numerical time integration is performed with different time step sizes for the component models. In this paper, we seek to identify a unified approach to develop multirate algorithms for these coupled problems. This effort is pursued though the use of discontinuous-Galerkin time stepping methods, acting as a general unified framework, with different time step sizes. The subproblems are coupled across user-defined intervals of time, called {\it coupling windows}, using polynomials that are continuous on the window. The coupling method is shown to reproduce the correct interfacial energy dissipation, discrete conservation of fluxes, and asymptotic accuracy. In principle, methods of arbitrary order are possible. As a first step, herein we focus on the presentation and analysis of monolithic methods for advection-diffusion models coupled via generalized Robin-type conditions. The monolithic methods could be computed using a Schur-complement approach. We conclude with some discussion of future developments, such as different interface conditions and partitioned methods.

相關內容

Center-based clustering is a pivotal primitive for unsupervised learning and data analysis. A popular variant is undoubtedly the k-means problem, which, given a set $P$ of points from a metric space and a parameter $k<|P|$, requires to determine a subset $S$ of $k$ centers minimizing the sum of all squared distances of points in $P$ from their closest center. A more general formulation, known as k-means with $z$ outliers, introduced to deal with noisy datasets, features a further parameter $z$ and allows up to $z$ points of $P$ (outliers) to be disregarded when computing the aforementioned sum. We present a distributed coreset-based 3-round approximation algorithm for k-means with $z$ outliers for general metric spaces, using MapReduce as a computational model. Our distributed algorithm requires sublinear local memory per reducer, and yields a solution whose approximation ratio is an additive term $O(\gamma)$ away from the one achievable by the best known sequential (possibly bicriteria) algorithm, where $\gamma$ can be made arbitrarily small. An important feature of our algorithm is that it obliviously adapts to the intrinsic complexity of the dataset, captured by the doubling dimension $D$ of the metric space. To the best of our knowledge, no previous distributed approaches were able to attain similar quality-performance tradeoffs for general metrics.

Singularity subtraction for linear weakly singular Fredholm integral equations of the second kind is generalized to nonlinear integral equations. Two approaches are presented: The Classical Approach discretizes the nonlinear problem, and uses some finite dimensional linearization process to solve numerically the discrete problem. Its convergence is proved under mild hypotheses on the nonlinearity and the quadrature rule of the singularity subtraction scheme. The New Approach is based on linearization of the problem in its infinite dimensional setting, and discretization of the sequence of linear problems by singularity subtraction. It is more efficient than the former, as two numerical experiments confirm.

A virtual element method (VEM) with the first order optimal convergence order is developed for solving two-dimensional Maxwell interface problems on a special class of polygonal meshes that are cut by the interface from a background unfitted mesh. A novel virtual space is introduced on a virtual triangulation of the polygonal mesh satisfying a maximum angle condition, which shares exactly the same degrees of freedom as the usual H(curl)-conforming virtual space. This new virtual space serves as the key to prove that the optimal error bounds of the VEM are independent of high aspect ratio of the possible anisotropic polygonal mesh near the interface.

Recently geometric hypergraphs that can be defined by intersections of pseudohalfplanes with a finite point set were defined in a purely combinatorial way. This led to extensions of earlier results about points and halfplanes to pseudohalfplanes, including polychromatic colorings and discrete Helly-type theorems about pseudohalfplanes. Here we continue this line of research and introduce the notion of convex sets of such pseudohalfplane hypergraphs. In this context we prove several results corresponding to classical results about convexity, namely Helly Theorem, Carath\'eodory's Theorem, Kirchberger's Theorem, Separation Theorem, Radon's Theorem and the Cup-Cap Theorem. These results imply the respective results about pseudoconvex sets in the plane defined using pseudohalfplanes. It turns out that most of our results can be also proved using oriented matroids and topological affine planes (TAPs) but our approach is different from both of them. Compared to oriented matroids, our theory is based on a linear ordering of the vertex set which makes our definitions and proofs quite different and perhaps more elementary. Compared to TAPs, which are continuous objects, our proofs are purely combinatorial and again quite different in flavor. Altogether, we believe that our new approach can further our understanding of these fundamental convexity results.

A key advantage of isogeometric discretizations is their accurate and well-behaved eigenfrequencies and eigenmodes. For degree two and higher, however, optical branches of spurious outlier frequencies and modes may appear due to boundaries or reduced continuity at patch interfaces. In this paper, we introduce a variational approach based on perturbed eigenvalue analysis that eliminates outlier frequencies without negatively affecting the accuracy in the remainder of the spectrum and modes. We then propose a pragmatic iterative procedure that estimates the perturbation parameters in such a way that the outlier frequencies are effectively reduced. We demonstrate that our approach allows for a much larger critical time-step size in explicit dynamics calculations. In addition, we show that the critical time-step size obtained with the proposed approach does not depend on the polynomial degree of spline basis functions.

A singularly perturbed parabolic problem of convection-diffusion type with a discontinuous initial condition is examined. An analytic function is identified which matches the discontinuity in the initial condition and also satisfies the homogenous parabolic differential equation associated with the problem. The difference between this analytical function and the solution of the parabolic problem is approximated numerically, using an upwind finite difference operator combined with an appropriate layer-adapted mesh. The numerical method is shown to be parameter-uniform. Numerical results are presented to illustrate the theoretical error bounds established in the paper.

This paper aims to initialize a dynamical aspect of symbolic integration by studying stability problems in differential fields. We present some basic properties of stable elementary functions and D-finite power series that enable us to characterize three special families of stable elementary functions involving rational functions, logarithmic functions, and exponential functions. Some problems for future studies are proposed towards deeper dynamical studies in differential and difference algebra.

In this work we consider the approximability of $\textsf{Max-CSP}(f)$ in the context of sketching algorithms and completely characterize the approximability of all Boolean CSPs. Specifically, given $f$, $\gamma$ and $\beta$ we show that either (1) the $(\gamma,\beta)$-approximation version of $\textsf{Max-CSP}(f)$ has a linear sketching algorithm using $O(\log n)$ space, or (2) for every $\epsilon > 0$ the $(\gamma-\epsilon,\beta+\epsilon)$-approximation version of $\textsf{Max-CSP}(f)$ requires $\Omega(\sqrt{n})$ space for any sketching algorithm. We also prove lower bounds against streaming algorithms for several CSPs. In particular, we recover the streaming dichotomy of [CGV20] for $k=2$ and show streaming approximation resistance of all CSPs for which $f^{-1}(1)$ supports a distribution with uniform marginals. Our positive results show wider applicability of bias-based algorithms used previously by [GVV17] and [CGV20] by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [KKS15], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results.

Multi-material problems often exhibit complex geometries along with physical responses presenting large spatial gradients or discontinuities. In these cases, providing high-quality body-fitted finite element analysis meshes and obtaining accurate solutions remain challenging. Immersed boundary techniques provide elegant solutions for such problems. Enrichment methods alleviate the need for generating conforming analysis grids by capturing discontinuities within mesh elements. Additionally, increased accuracy of physical responses and geometry description can be achieved with higher-order approximation bases. In particular, using B-splines has become popular with the development of IsoGeometric Analysis. In this work, an eXtended IsoGeometric Analysis (XIGA) approach is proposed for multi-material problems. The computational domain geometry is described implicitly by level set functions. A novel generalized Heaviside enrichment strategy is employed to accommodate an arbitrary number of materials without artificially stiffening the physical response. Higher-order B-spline functions are used for both geometry representation and analysis. Boundary and interface conditions are enforced weakly via Nitsche's method, and a new face-oriented ghost stabilization methodology is used to mitigate numerical instabilities arising from small material integration subdomains. Two- and three-dimensional heat transfer and elasticity problems are solved to validate the approach. Numerical studies provide insight into the ability to handle multiple materials considering sharp-edged and curved interfaces, as well as the impact of higher-order bases and stabilization on the solution accuracy and conditioning.

Physical systems are usually modeled by differential equations, but solving these differential equations analytically is often intractable. Instead, the differential equations can be solved numerically by discretization in a finite computational domain. The discretized equation is reduced to a large linear system, whose solution is typically found using an iterative solver. We start with an initial guess, x_0, and iterate the algorithm to obtain a sequence of solution vectors, x_m. The iterative algorithm is said to converge to solution $x$ if and only if x_m converges to $x$. Accuracy of the numerical solutions is important, especially in the design of safety critical systems such as airplanes, cars, or nuclear power plants. It is therefore important to formally guarantee that the iterative solvers converge to the "true" solution of the original differential equation. In this paper, we first formalize the necessary and sufficient conditions for iterative convergence in the Coq proof assistant. We then extend this result to two classical iterative methods: Gauss-Seidel iteration and Jacobi iteration. We formalize conditions for the convergence of the Gauss--Seidel classical iterative method, based on positive definiteness of the iterative matrix. We then formally state conditions for convergence of Jacobi iteration and instantiate it with an example to demonstrate convergence of iterative solutions to the direct solution of the linear system. We leverage recent developments of the Coq linear algebra and mathcomp library for our formalization.

北京阿比特科技有限公司